【題目】如圖,AB,AC是⊙O的兩條弦,且.
(1)求證:AO平分∠BAC;
(2)若AB=4,BC=8,求半徑OA的長.
【答案】(1)詳見解析;(2)5.
【解析】
(1)由已知可得AB=AC,又OC=OB,OA=OA,則△AOB≌△AOC,根據(jù)全等三角形的性質(zhì)知,∠1=∠2,進(jìn)而解答即可;
(2)根據(jù)勾股定理解答即可.
(1)連接OB、OC,
∵
∴AB=AC,
又OC=OB,OA=OA,
∴△AOB≌△AOC(SSS),
∴∠1=∠2,
∴AO平分∠BAC;
(2)連接AO并延長交BC于E,連接OB,
∵AB=AC,AO平分∠BAC,
∴AE⊥BC,
設(shè)OA=x,可得:AB2﹣BE2=AE2,OB2=OE2+BE2,
可得:,x2=OE2+42
解得:x=5,OE=3,
∴半徑OA的長=5.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下面是小星同學(xué)設(shè)計的“過直線外一點作已知直線的平行線”的尺規(guī)作圖過程:
已知:如圖,直線l和直線l外一點A
求作:直線AP,使得AP∥l
作法:如圖
①在直線l上任取一點B(AB與l不垂直),以點A為圓心,AB為半徑作圓,與直線l交于點C.
②連接AC,AB,延長BA到點D;
③作∠DAC的平分線AP.
所以直線AP就是所求作的直線
根據(jù)小星同學(xué)設(shè)計的尺規(guī)作圖過程,
(1)使用直尺和圓規(guī),補全圖形(保留作圖痕跡)
(2)完成下面的證明
證明:∵AB=AC,
∴∠ABC=∠ACB (填推理的依據(jù))
∵∠DAC是△ABC的外角,
∴∠DAC=∠ABC+∠ACB (填推理的依據(jù))
∴∠DAC=2∠ABC
∵AP平分∠DAC,
∴∠DAC=2∠DAP
∴∠DAP=∠ABC
∴AP∥l (填推理的依據(jù))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△ABC中,∠ACB=90°,AC=BC,D是線段AB上一點(0<AD<AB).過點B作BE⊥CD,垂足為E.將線段CE繞點C逆時針旋轉(zhuǎn)90°,得到線段CF,連接AF,EF.設(shè)∠BCE的度數(shù)為α.
(1)①依題意補全圖形.
②若α=60°,則∠CAF=_____°;=_____;
(2)用含α的式子表示EF與AB之間的數(shù)量關(guān)系,并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于的一元二次方程:.
(1)求證:對于任意實數(shù),方程都有實數(shù)根;
(2)當(dāng)為何值時,方程的兩個根互為相反數(shù)?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx+c的圖象過點A(3,0),對稱軸為直線x=1,給出以下結(jié)論:①abc<0;②a+b+c≥ax2+bx+c;③若M(n2+1,y1),N(n2+2,y2)為函數(shù)圖象上的兩點,則y1>y2.④若關(guān)于x的一元二次方程ax2+bx+c=p(p>0)有整數(shù)根,則p的值2個.有其中正確的有( )個.
A.1B.2C.3D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公司從2014年開始投入技術(shù)改進(jìn)資金,經(jīng)技術(shù)改進(jìn)后,其產(chǎn)品的成本不斷降低,具體數(shù)據(jù)如下表:
年 度 | 2013 | 2014 | 2015 | 2016 |
投入技改資金(萬元) | 2.5 | 3 | 4 | 4.5 |
產(chǎn)品成本(萬元/件) | 7.2 | 6 | 4.5 | 4 |
(1)請你認(rèn)真分析表中數(shù)據(jù),從一次函數(shù)和反比例函數(shù)中確定哪一個函數(shù)能表示其變化規(guī)律,給出理由,并求出其解析式;
(2)按照這種變化規(guī)律,若2017年已投入資金5萬元.
①預(yù)計生產(chǎn)成本每件比2016年降低多少萬元?
②若打算在2017年把每件產(chǎn)品成本降低到3.2萬元,則還需要投入技改資金多少萬元?(結(jié)果精確到0.01萬元).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,已知拋物線y=(x+1)(x﹣3)(m為常數(shù),且m>0)經(jīng)過點c(0,﹣),與x軸交于點A、B(點A位于點B的左側(cè)).
(1)請直接寫出m的值及點A、點B的坐標(biāo);
(2)請你探究:在直線BC上是否存在點P,使以P、A、B為頂點的三角形與△BOC相似?若存在,請求出AP的長;若不存在,說明理由.
(3)如圖2,點D(2,﹣),連接AD,拋物線上是否存在點Q,使∠BAQ=2∠BAD,若存在,請直接寫出點Q的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是由邊長為1的木條組成的幾何圖案,觀察圖形規(guī)律,解決下列問題:
……….
(1)填空:第一個圖案由1個正方形組成,共用的木條根數(shù);
第二個圖案由4個正方形組成,共用的木條根數(shù);
第三個圖案由9個正方形組成,共用的木條根數(shù) ;
第四個圖案由16個正方形組成,共用的木條根數(shù) ;
(2)第個圖案由個正方形組成,共用木條根數(shù) (用含的代數(shù)式表示)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com