【題目】如圖,在平面直角坐標(biāo)系xOy中,動點(diǎn)A(a,0)在x軸的正半軸上,定點(diǎn)B(m, n)在第一象限內(nèi)(m<2≤a).在△OAB外作正方形ABCD和正方形OBEF , 連接FD , 點(diǎn)M為線段FD的中點(diǎn).作BB1x軸于點(diǎn)B1 , 作FF1x軸于點(diǎn)F1.

(1)填空:由△≌△ , 及B(m, n)可得點(diǎn)F的坐標(biāo)為 , 同理可得點(diǎn)D的坐標(biāo)為;(說明:點(diǎn)F , 點(diǎn)D的坐標(biāo)用含m , na的式子表示)
(2)直接利用(1)的結(jié)論解決下列問題:
①當(dāng)點(diǎn)Ax軸的正半軸上指定范圍內(nèi)運(yùn)動時,點(diǎn)M總落在一個函數(shù)圖象上,求該函數(shù)的解析式(不必寫出自變量x的取值范圍);
②當(dāng)點(diǎn)Ax軸的正半軸上運(yùn)動且滿足2≤a≤8時,求點(diǎn)M所經(jīng)過的路徑的長.

【答案】
(1);;
(2)

解:①設(shè)點(diǎn)M的坐標(biāo)為 .

∵ 點(diǎn)M為線段FD的中點(diǎn), ,

可得點(diǎn)M的坐標(biāo)為 .

消去a,得 .

所以,當(dāng)點(diǎn)Ax軸的正半軸上指定范圍內(nèi)運(yùn)動時,相應(yīng)的點(diǎn)M在運(yùn)動時總落在直線 上,即點(diǎn)M總落在函數(shù) 的圖象上.

②如圖2,當(dāng)點(diǎn)Ax軸的正半軸上運(yùn)動且滿足2≤a≤8時,點(diǎn)A運(yùn)動的路徑為線段 ,其中 ,相應(yīng)地,點(diǎn)M所經(jīng)過的路徑為直線 上的一條線段 ,其中 .

,

∴ 點(diǎn)M所經(jīng)過的路徑的長為


【解析】(1)如圖1.由△ ≌△ ,及B(m, n)可得點(diǎn)F的坐標(biāo)為 ,同理可得點(diǎn)D的坐標(biāo)為 .

【考點(diǎn)精析】根據(jù)題目的已知條件,利用線段的中點(diǎn)和兩點(diǎn)間的距離的相關(guān)知識可以得到問題的答案,需要掌握線段的中點(diǎn)到兩端點(diǎn)的距離相等;同軸兩點(diǎn)求距離,大減小數(shù)就為之.與軸等距兩個點(diǎn),間距求法亦如此.平面任意兩個點(diǎn),橫縱標(biāo)差先求值.差方相加開平方,距離公式要牢記.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的方程 有兩個不相等的實(shí)數(shù)根.
(1)求m的取值范圍;
(2)當(dāng)m為正整數(shù)時,求方程的根.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在矩形ABCO中,O為坐標(biāo)原點(diǎn),Ay軸上,Cx軸上,B的坐標(biāo)為(8,6),P是線段BC上動點(diǎn),點(diǎn)D是直線y=2x﹣6上第一象限的點(diǎn),若APD是等腰直角三角形,則點(diǎn)D的坐標(biāo)為_____________。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一樓房AB后有一假山,其坡度為i1,山坡坡面上E點(diǎn)處有一休息亭,測

得假山坡腳C與樓房水平距離BC25米,與亭子距離CE20米,小麗從樓房頂測得E點(diǎn)的俯角

45°,求樓房AB的高.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,等腰Rt△ABC中,BA=BC,∠ABC=90°,點(diǎn)D在AC上,將△ABD繞點(diǎn)B沿順時針方向旋轉(zhuǎn)90°后,得到△CBE.

(1)求∠DCE的度數(shù);

(2)若AB=4,CD=3AD,求DE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線y1=-x2+4x和直線y2=2x.我們約定:當(dāng)x任取一值時,x對應(yīng)的函數(shù)值分別為y1、y2,若y1=y2,記M=y1=y2,下列判斷:①當(dāng)x>2時,M=y2;②當(dāng)x<0時,x值越大,M值越大;③使得M大于4的x值不存在;④若M=2,則x=1.其中正確的有( 。

A. ③④ B. ②③ C. ②④ D. ①④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系內(nèi),⊙C與y軸相切于D點(diǎn),與x軸相交于A(2,0)、B(8,0)兩點(diǎn),圓心C在第四象限.

(1)求點(diǎn)C的坐標(biāo);

(2)連接BC并延長交⊙C于另一點(diǎn)E,若線段BE上有一點(diǎn)P,使得AB2=BPBE,能否推出AP⊥BE?請給出你的結(jié)論,并說明理由;

(3)在直線BE上是否存在點(diǎn)Q,使得AQ2=BQEQ?若存在,求出點(diǎn)Q的坐標(biāo);若不存在,也請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形ABCD中,AB=4cm,∠ADC=120°,點(diǎn)E、F同時由A、C兩點(diǎn)出發(fā),分別沿ABCB方向向點(diǎn)B勻速移動(到點(diǎn)B為止),點(diǎn)E的速度為1cm/s,點(diǎn)F的速度為2cm/s,經(jīng)過t△DEF為等邊三角形,則t的值為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】適合下列條件的△ABC中,直角三角形的個數(shù)為( ) ①a= ,b= ,c= ;
②a=6,∠A=45°;
③∠A=32°,∠B=58°;
④a=7,b=24,c=25.
A.2個
B.3個
C.4個
D.5個

查看答案和解析>>

同步練習(xí)冊答案