【題目】如圖,在菱形ABCD中,點(diǎn)E,F分別在AB,CD上,且,連接EFBD于點(diǎn)O連接AO.,,則的度數(shù)為(

A.50°B.55°C.65°D.75°

【答案】C

【解析】

由菱形的性質(zhì)以及已知條件可證明△BOE≌△DOF,然后根據(jù)全等三角形的性質(zhì)可得BO=DO,即OBD的中點(diǎn),進(jìn)而可得AOBD,再由∠ODA=DBC=25°,即可求出∠OAD的度數(shù).

∵四邊形ABCD為菱形

AB=BC=CD=DA,ABCD,ADBC

∴∠ODA=DBC=25°,∠OBE=ODF,

又∵AE=CF

BE=DF

在△BOE和△DOF中,

∴△BOE≌△DOFAAS

OB=OD

OBD的中點(diǎn),

又∵AB=AD

AOBD

∴∠AOD=90°

∴∠OAD=90°-ODA=65°

故選C.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在不透明的袋中有大小形狀和質(zhì)地等完全相同的個(gè)小球,它們分別標(biāo)有數(shù)字,從袋中任意摸出一小球(不放回),將袋中的小球攪勻后,再從袋中摸出另一小球.

1)請你用列表或畫樹狀圖的方法表示摸出小球上的數(shù)字可能出現(xiàn)的所有結(jié)果;

2)規(guī)定:如果摸出的兩個(gè)小球上的數(shù)字都是方程的根,則小明贏;如果摸出的兩個(gè)小球上的數(shù)字都不是方程的根,則小亮贏.你認(rèn)為這個(gè)游戲規(guī)則對小明、小亮雙方公平嗎?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】教育部基礎(chǔ)教育司負(fù)責(zé)人解讀“2020新中考時(shí)強(qiáng)調(diào)要注重學(xué)生分析與解決問題的能力,要增強(qiáng)學(xué)生的創(chuàng)新精神和綜合素質(zhì).王老師想嘗試改變教學(xué)方法,將以往教會學(xué)生做題改為引導(dǎo)學(xué)生會學(xué)習(xí).于是她在菱形的學(xué)習(xí)中,引導(dǎo)同學(xué)們解決菱形中的一個(gè)問題時(shí),采用了以下過程(請解決王老師提出的問題):

先出示問題(1:如圖1,在等邊三角形中,上一點(diǎn),上一點(diǎn),如果,連接、、相交于點(diǎn),求的度數(shù).

通過學(xué)習(xí),王老師請同學(xué)們說說自己的收獲.小明說發(fā)現(xiàn)一個(gè)結(jié)論:在這個(gè)等邊三角形中,只要滿足,則的度數(shù)就是一個(gè)定值,不會發(fā)生改變.緊接著王老師出示了問題(2:如圖2,在菱形中,,上一點(diǎn),上一點(diǎn),,連接、,、相交于點(diǎn),如果,求出菱形的邊長.

問題(3):通過以上的學(xué)習(xí)請寫出你得到的啟示(一條即可).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】當(dāng)今,越來越多的青少年在觀看影片《流浪地球》后,更加喜歡同名科幻小說,該小說銷量也急劇上升.書店為滿足廣大顧客需求,訂購該科幻小說若干本,每本進(jìn)價(jià)為20元.根據(jù)以往經(jīng)驗(yàn):當(dāng)銷售單價(jià)是25元時(shí),每天的銷售量是250本;銷售單價(jià)每上漲1元,每天的銷售量就減少10本,書店要求每本書的利潤不低于10元且不高于18元.

1)直接寫出書店銷售該科幻小說時(shí)每天的銷售量(本)與銷售單價(jià)(元)之間的函數(shù)關(guān)系式及自變量的取值范圍.

2)書店決定每銷售1本該科幻小說,就捐贈元給困難職工,每天扣除捐贈后可獲得最大利潤為1960元,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明、小剛和小紅打算各自隨機(jī)選擇本周日的上午或下午去揚(yáng)州馬可波羅花世界游玩.

小明和小剛都在本周日上午去游玩的概率為________;

求他們?nèi)嗽谕粋(gè)半天去游玩的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,對角線,點(diǎn)E是線段BC上的動(dòng)點(diǎn),連接DE,過點(diǎn)DDPDE,在射線DP上取點(diǎn)F,使得,連接CF,周長的最小值為___________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角坐標(biāo)系中,點(diǎn)B的坐標(biāo)為,過點(diǎn)B分別作x軸、y軸垂線,垂足分別是C,A,反比例函數(shù)的圖象交AB,BC分別于點(diǎn)E,F.

1)求直線EF的解析式.

2)求四邊形BEOF的面積.

3)若點(diǎn)Py軸上,且是等腰三角形,請直接寫出點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知矩形ABCD和矩形EFGO在平面直角坐標(biāo)系中,點(diǎn)B,F的坐標(biāo)分別為(4,4)(2,1).若矩形ABCD和矩形EFGO是位似圖形,點(diǎn)P(點(diǎn)PGC)是位似中心,則點(diǎn)P的坐標(biāo)為(  )

A. (0,3)

B. (0,2.5)

C. (0,2)

D. (0,1.5)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點(diǎn)Aa,3)是一次函數(shù)y1x+1與反比例函數(shù)y2的圖象的交點(diǎn).(1)求反比例函數(shù)的解析式;(2)在y軸的右側(cè),當(dāng)y1y2時(shí),直接寫出x的取值范圍;(3)求點(diǎn)A與兩坐標(biāo)軸圍成的矩形OBAC的面積.

查看答案和解析>>

同步練習(xí)冊答案