【題目】如圖1,點(diǎn)P、Q分別是邊長(zhǎng)為4cm的等邊△ABC邊AB、BC上的動(dòng)點(diǎn),點(diǎn)P從頂點(diǎn)A,點(diǎn)Q從頂點(diǎn)B同時(shí)出發(fā),且它們的速度都為1cm/s,
(1)連接AQ、CP交于點(diǎn)M,則在P、Q運(yùn)動(dòng)的過(guò)程中,∠CMQ變化嗎?若變化,則說(shuō)明理由,若不變,則求出它的度數(shù);
(2)何時(shí)△PBQ是直角三角形?
(3)如圖2,若點(diǎn)P、Q在運(yùn)動(dòng)到終點(diǎn)后繼續(xù)在射線(xiàn)AB、BC上運(yùn)動(dòng),直線(xiàn)AQ、CP交點(diǎn)為M,則∠CMQ變化嗎?若變化,則說(shuō)明理由,若不變,則求出它的度數(shù).

【答案】
(1)解:∠CMQ=60°不變.

∵等邊三角形中,AB=AC,∠B=∠CAP=60°

又由條件得AP=BQ,

∴△ABQ≌△CAP(SAS),

∴∠BAQ=∠ACP,

∴∠CMQ=∠ACP+∠CAM=∠BAQ+∠CAM=∠BAC=60°


(2)解:設(shè)時(shí)間為t,則AP=BQ=t,PB=4﹣t

①當(dāng)∠PQB=90°時(shí),

∵∠B=60°,

∴PB=2BQ,得4﹣t=2t,t= ;

②當(dāng)∠BPQ=90°時(shí),

∵∠B=60°,

∴BQ=2BP,得t=2(4﹣t),t=

∴當(dāng)?shù)? 秒或第 秒時(shí),△PBQ為直角三角形


(3)解:∠CMQ=120°不變.

∵在等邊三角形中,BC=AC,∠B=∠CAP=60°

∴∠PBC=∠ACQ=120°,

又由條件得BP=CQ,

∴△PBC≌△QCA(SAS)

∴∠BPC=∠MQC

又∵∠PCB=∠MCQ,

∴∠CMQ=∠PBC=180°﹣60°=120°


【解析】(1)因?yàn)辄c(diǎn)P從頂點(diǎn)A,點(diǎn)Q從頂點(diǎn)B同時(shí)出發(fā),且它們的速度都為1cm/s,所以AP=BQ.AB=AC,∠B=∠CAP=60°,因而運(yùn)用邊角邊定理可知△ABQ≌△CAP.再用全等三角形的性質(zhì)定理及三角形的角間關(guān)系、三角形的外角定理,可求得CQM的度數(shù).(2)設(shè)時(shí)間為t,則AP=BQ=t,PB=4﹣t.分別就①當(dāng)∠PQB=90°時(shí);②當(dāng)∠BPQ=90°時(shí)利用直角三角形的性質(zhì)定理求得t的值.(3)首先利用邊角邊定理證得△PBC≌△QCA,再利用全等三角形的性質(zhì)定理得到∠BPC=∠MQC.再運(yùn)用三角形角間的關(guān)系求得∠CMQ的度數(shù).
【考點(diǎn)精析】本題主要考查了等邊三角形的性質(zhì)的相關(guān)知識(shí)點(diǎn),需要掌握等邊三角形的三個(gè)角都相等并且每個(gè)角都是60°才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在□ABCD中,∠ABC,BCD的平分線(xiàn)分別交AD于點(diǎn)EF,BECF相交于點(diǎn)G

(1)求證:BECF;

(2)若AB=aCF=b,寫(xiě)出求BE的長(zhǎng)的思路

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1所示∠AOB的紙片,OC平分∠AOB,如圖2把∠AOB沿OC對(duì)折成∠COBOAOB重合),從O點(diǎn)引一條射線(xiàn)OE,使∠BOE=EOC,再沿OE把角剪開(kāi),若剪開(kāi)后得到的3個(gè)角中最大的一個(gè)角為76°,則∠AOB=_____________°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我市進(jìn)行運(yùn)河帶綠化,計(jì)劃種植銀杏樹(shù)苗,現(xiàn)甲、乙兩家有相同的銀杏樹(shù)苗可供選擇,其具體銷(xiāo)售方案如下:

甲:購(gòu)買(mǎi)樹(shù)苗數(shù)量不超過(guò)500棵時(shí),銷(xiāo)售單價(jià)為800棵;超過(guò)500棵的部分,銷(xiāo)售單價(jià)為700棵.

乙:購(gòu)買(mǎi)樹(shù)苗數(shù)量不超過(guò)1000棵時(shí),銷(xiāo)售單價(jià)為800棵;超過(guò)1000棵的部分,銷(xiāo)售單價(jià)為600棵.

設(shè)購(gòu)買(mǎi)銀杏樹(shù)苗x棵,到兩家購(gòu)買(mǎi)所需費(fèi)用分別為元、

(1)該景區(qū)需要購(gòu)買(mǎi)800棵銀杏樹(shù)苗,若都在甲家購(gòu)買(mǎi)所要費(fèi)用為______元,若都在乙家購(gòu)買(mǎi)所需費(fèi)用為______元;

(2)當(dāng)時(shí),分別求出x之間的函數(shù)關(guān)系式;

(3)如果你是該景區(qū)的負(fù)責(zé)人,購(gòu)買(mǎi)樹(shù)苗時(shí)有什么方案,為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,∠AOB=120°,射線(xiàn)OCOA開(kāi)始,繞點(diǎn)O逆時(shí)針旋轉(zhuǎn),旋轉(zhuǎn)的速度為每分鐘20°;射線(xiàn)ODOB開(kāi)始,繞點(diǎn)O逆時(shí)針旋轉(zhuǎn),旋轉(zhuǎn)的速度為每分鐘5°,OCOD同時(shí)旋轉(zhuǎn),設(shè)旋轉(zhuǎn)的時(shí)間為t(0≤t≤15).

(1)當(dāng)t為何值時(shí),射線(xiàn)OCOD重合;

(2)當(dāng)t為何值時(shí),∠COD=90°;

(3)試探索:在射線(xiàn)OCOD旋轉(zhuǎn)的過(guò)程中,是否存在某個(gè)時(shí)刻,使得射線(xiàn)OCOBOD中的某一條射線(xiàn)是另兩條射線(xiàn)所夾角的角平分線(xiàn)?若存在,請(qǐng)求出所有滿(mǎn)足題意的t的取值,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在菱形ABCD中,∠BAD=70°,AB的垂直平分線(xiàn)交對(duì)角線(xiàn)AC于點(diǎn)F,垂足為E,連接DF,則∠CDF等于(
A.55°
B.65°
C.75°
D.85°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】操作與證明:如圖,把一個(gè)含角的直角三角板ECF和一個(gè)正方形ABCD擺放在一起,使三角板的直角頂點(diǎn)和正方形的頂點(diǎn)C重合,點(diǎn)E、F分別在正方形的邊CB、CD上,連接AC、AE、其中ACEF交于點(diǎn)N,取AF中點(diǎn)M,連接MD、MN

求證:是等腰三角形;

的條件下,請(qǐng)判斷MDMN的數(shù)量關(guān)系和位置關(guān)系,并給出證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,一次函數(shù)的圖象經(jīng)過(guò)點(diǎn)A(2,3)與點(diǎn)B(0,5).

(1)求此一次函數(shù)的表達(dá)式;

(2)若點(diǎn)P為此一次函數(shù)圖象上一點(diǎn),且△POB的面積為10,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,O為直線(xiàn)AB上一點(diǎn),∠DOC為直角,OE平分∠AOC,OG平分∠BOC,OF平分∠BOD,下列結(jié)論錯(cuò)誤的是(

A. ∠DOG與∠BOE互補(bǔ) B. ∠AOE-∠DOF=45°

C. ∠EOD與∠COG互補(bǔ) D. ∠AOE與∠DOF互余

查看答案和解析>>

同步練習(xí)冊(cè)答案