【題目】如圖,在△ABC中,∠BAC=90°,BE平分∠ABC,AM⊥BC于點M,交BE于點G,AD平分∠MAC,交BC于點D,交BE于點F.
(1)判斷直線BE與線段AD之間的關(guān)系,并說明理由;
(2)若∠C=30°,圖中是否存在等邊三角形?若存在,請寫出來并證明;若不存在,請說明理由.
【答案】(1)BE垂直平分AD,理由見解析;(2)存在,△ABD、△GAE是等邊三角形.
【解析】
(1)根據(jù)余角的性質(zhì)即可得到∠5=∠C;由AD平分∠MAC,得到∠3=∠4,根據(jù)三角形的外角的性質(zhì)得到∠BAD=∠ADB,推出△BAD是等腰三角形,于是得到結(jié)論.
(2)根據(jù)∠5=∠C=30°,AM⊥BC,可得∠ABD=60°,∠CAM=60°,進而得到∠ADB=∠4+∠C=60°,∠BAD=60°,依據(jù)∠ABD=∠BDA=∠BAD,可得△ABD是等邊三角形;根據(jù)∠AEG=∠AGE=∠GAE,即可得到△AEG是等邊三角形.
解:(1)BE垂直平分AD,理由:
∵AM⊥BC,
∴∠ABC+∠5=90°,
∵∠BAC=90°,
∴∠ABC+∠C=90°,
∴∠5=∠C;
∵AD平分∠MAC,
∴∠3=∠4,
∵∠BAD=∠5+∠3,∠ADB=∠C+∠4,∠5=∠C,
∴∠BAD=∠ADB,
∴△BAD是等腰三角形,
又∵∠1=∠2,
∴BE垂直平分AD;
(2)△ABD、△GAE是等邊三角形.理由:
∵∠5=∠C=30°,AM⊥BC,
∴∠ABD=60°,
∵∠BAC=90°,
∴∠CAM=60°,
∵AD平分∠CAM,
∴∠4=∠CAM=30°,
∴∠ADB=∠4+∠C=60°,
∴∠BAD=60°,
∴∠ABD=∠BDA=∠BAD,
∴△ABD是等邊三角形;
∵在Rt△BGM中,∠BGM=60°=∠AGE,
在Rt△ACM中,∠CAM=60°,
∴∠AEG=∠AGE=∠GAE,
∴△AEG是等邊三角形.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在航線l的兩側(cè)分別有觀測點A和B,點A到航線的距離為2km,點B位于點A北偏東60°方向且與A相距10km.現(xiàn)有一艘輪船從位于點B南偏西76°方向的C處,正沿該航線自西向東航行,5分鐘后該輪船行至點A的正北方向的D處.
(1)求觀測點B到航線的距離;
(2)求該輪船航行的速度(結(jié)果精確到0.1km/h).
(參考數(shù)據(jù): ≈1.73,sin76°≈0.97,cos76°≈0.24,tan76°≈4.01)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)y=x2+bx-1的圖象經(jīng)過點(2,3).
(1)求這個函數(shù)的表達式;
(2)畫出它的圖象,并指出圖象的頂點坐標;
(3)觀察圖象,說明y隨x的增大是怎樣變化的?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在長方形 ABCD 中,放入六個形狀大小相同的長方形,所標尺寸如圖所示, 則圖中陰影部分面積為( )
A. 44cm2B. 36cm2C. 96 cm2D. 84cm2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,F是AD的中點,延長BC到點E,使CE=BC,連結(jié)DE,CF。
(1)求證:四邊形CEDF是平行四邊形;
(2)若AB=4,AD=6,∠B=60°,求DE的長。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場用14500元購進甲、乙兩種礦泉水共500箱,礦泉水的成本價與銷售價如表(二)所示:
類別 | 成本價(元/箱) | 銷售價(元/箱) |
甲 | 25 | 35 |
乙 | 35 | 48 |
求:(1)購進甲、乙兩種礦泉水各多少箱?
(2)該商場售完這500箱礦泉水,可獲利多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】兩人騎自行車繞800米圓形跑道行駛,他們從同一地點出發(fā),如果方向相反,每一分二十秒相遇一次,如果方向相同,每十三分二十秒相遇一次.假設(shè)二人速度不等,求各人速度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知在Rt△ABC中,∠ACB = 90o,AC =6,BC = 8,點F在線段AB上,以點B為圓心,BF為半徑的圓交BC于點E,射線AE交圓B于點D(點D、E不重合).
(1)如果設(shè)BF = x,EF = y,求y與x之間的函數(shù)關(guān)系式,并寫出它的定義域;
(2)如果,求ED的長;
(3)聯(lián)結(jié)CD、BD,請判斷四邊形ABDC是否為直角梯形?說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com