【題目】如圖,在△ABC中,∠ACB90°,AO平分∠BAC,交BC于點(diǎn)O.以O為圓心,OC為半徑作⊙O,分別交AO,BC于點(diǎn)EF

1)求證:AB是⊙O的切線;

2)延長(zhǎng)AO交⊙O于點(diǎn)D,連接CD,若AD2AC,求tanD的值;

3)在(2)的條件下,設(shè)⊙O的半徑為3,求BC的長(zhǎng).

【答案】(1)證明見(jiàn)解析;(2)tanD;(3

【解析】

1)根據(jù)題意過(guò)點(diǎn)OOMAB,由角平分線到性質(zhì)可得OC=OM,即可證AB是⊙O的切線;

2)由題意證明△ACE∽△ADC,可得,以此進(jìn)行分析即可得出結(jié)論.

3)根據(jù)題意由相似三角形的性質(zhì)可得,即可求AD=8,AC=4=AM,通過(guò)證明△OBM∽△ABC,可得,可得關(guān)于OB,BM的方程組,即可求BM的長(zhǎng),即可求ABBC的長(zhǎng).

證明:(1)如圖,過(guò)點(diǎn)OOMAB,

AO平分∠BAC,OMAB,∠ACB90°,

OCOM,

OM為⊙O半徑,且OMAB,

AB是⊙O切線.

2)解:∵DE是⊙O的直徑,

∴∠DCE90°

∵∠ACB90°,

∴∠DCE=∠ACB,

∴∠DCO=∠ACE,

OCOD

∴∠D=∠DCO

∴∠ACE=∠D,且∠A=∠A

∴△ACE∽△ADC,

,

AD2AC

tanD;

3)∵△ACE∽△ADC

,

AC2ADAD6),且2ACAD,

AD8,

AC4

AOAO,OCOM,

RtAOMRtAOCHL),

AMAC4

∵∠B=∠B,∠OMB=∠ACB90°

∴△OBM∽△ABC

,

,

BM,

AB4+,

BC

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】垃圾分類問(wèn)題受到全社會(huì)的廣泛關(guān)注,我區(qū)某校學(xué)生會(huì)向全校2100名學(xué)生發(fā)起了“垃圾要回家,請(qǐng)你幫助它”的捐款活動(dòng),用于購(gòu)買垃圾分類桶.為了解捐款情況,學(xué)生會(huì)隨機(jī)調(diào)查了部分學(xué)生的捐款金額,并用得到的數(shù)據(jù)繪制了如圖統(tǒng)計(jì)圖1和圖2,請(qǐng)根據(jù)相關(guān)信息,解答下列問(wèn)題:

1)本次接受隨機(jī)抽樣調(diào)查的學(xué)生人數(shù)為  ,圖1m的值是  ;

2)求本次調(diào)查獲取的樣本數(shù)據(jù)的平均數(shù)、眾數(shù)和中位數(shù);

3)根據(jù)樣本數(shù)據(jù),估計(jì)該校本次活動(dòng)捐款金額為5元的學(xué)生人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,反比例函數(shù)和一次函數(shù)y=kx-1的圖象相交于Am,2m),B兩點(diǎn).

1)求一次函數(shù)的表達(dá)式;

2)求出點(diǎn)B的坐標(biāo),并根據(jù)圖象直接寫(xiě)出滿足不等式x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校王老師組織九(1)班同學(xué)開(kāi)展數(shù)學(xué)活動(dòng),某天帶領(lǐng)同學(xué)們測(cè)量學(xué)校附近一電線桿的高.已知電線桿直立于地面上,在太陽(yáng)光的照射下,電線桿的影子(折線BCD)恰好落在水平地面和斜坡上,在D處測(cè)得電線桿頂端A的仰角為30°,在C處測(cè)得電線桿頂端A的仰角為45°,斜坡與地面成60°角,CD4m,請(qǐng)你根據(jù)這些數(shù)據(jù)求電線桿的高AB.(結(jié)果用根號(hào)表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,二次函數(shù)y=﹣x2+bx+c的圖象經(jīng)過(guò)點(diǎn)A4,0),C0,2).

1)求拋物線的表達(dá)式;

2)如圖1,點(diǎn)E是第一象限的拋物線上的一個(gè)動(dòng)點(diǎn).當(dāng)△ACE面積最大時(shí),請(qǐng)求出點(diǎn)E的坐標(biāo);

3)如圖2,在拋物線上是否存在一點(diǎn)P,使∠CAP45°?若存在,求點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線y=﹣x+2分別與x軸,y軸交于點(diǎn)AB,點(diǎn)C是反比例函數(shù)y的圖象在第一象限內(nèi)一動(dòng)點(diǎn).過(guò)點(diǎn)C作直線CDAB.交x軸于點(diǎn)D,交AB于點(diǎn)E.則CEDE的最小值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖①,點(diǎn)G是等邊三角形AOB的外心,點(diǎn)A在第一象限,點(diǎn)B坐標(biāo)為(40),連結(jié)OG.拋物線yaxx2+1+的頂點(diǎn)為P

1)直接寫(xiě)出點(diǎn)A的坐標(biāo)與拋物線的對(duì)稱軸;

2)連結(jié)OP,求當(dāng)∠AOG2AOP時(shí)a的值.

3)如圖②,若拋物線開(kāi)口向上,點(diǎn)C,D分別為拋物線和線段AB上的動(dòng)點(diǎn),以CD為底邊構(gòu)造頂角為120°的等腰三角形CDE(點(diǎn)C,DE成逆時(shí)針順序),連結(jié)GE

①點(diǎn)Qx軸上,當(dāng)四邊形GDQO為平行四邊形時(shí),求GQ的值;

②當(dāng)GE的最小值為1時(shí),求拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】“端午節(jié)”是我國(guó)的傳統(tǒng)佳節(jié),民間歷來(lái)有吃粽子的習(xí)俗.我市某食品廠為了解市民對(duì)去年銷量較好的肉餡粽、豆沙餡粽、紅棗餡粽、蛋黃餡粽(以下分別用A,B,C,D表示)這四種不同口味粽子的喜愛(ài)情況,在節(jié)前對(duì)某居民區(qū)市民進(jìn)行了抽樣調(diào)查,并將調(diào)查情況繪制成如下兩幅統(tǒng)計(jì)圖(尚不完整).

請(qǐng)根據(jù)以上信息回答:

1)將兩幅不完整的圖補(bǔ)充完整;

2)本次參加抽樣調(diào)查的居民有多少人?

3)若居民區(qū)有8000人,請(qǐng)估計(jì)愛(ài)吃D粽的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:在平面直角坐標(biāo)系xOy中,二次函數(shù)y=mx 2 +2mx4m≠0)的圖象與x軸交于點(diǎn)A、B(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C,△ABC的面積為12

1)求這個(gè)二次函數(shù)的解析式;

2)點(diǎn)D的坐標(biāo)為(-21),點(diǎn)P在二次函數(shù)的圖象上,∠ADP為銳角,且tanADP=2,求出點(diǎn)P的橫坐標(biāo);

查看答案和解析>>

同步練習(xí)冊(cè)答案