【題目】垃圾分類問題受到全社會的廣泛關(guān)注,我區(qū)某校學生會向全校2100名學生發(fā)起了“垃圾要回家,請你幫助它”的捐款活動,用于購買垃圾分類桶.為了解捐款情況,學生會隨機調(diào)查了部分學生的捐款金額,并用得到的數(shù)據(jù)繪制了如圖統(tǒng)計圖1和圖2,請根據(jù)相關(guān)信息,解答下列問題:

1)本次接受隨機抽樣調(diào)查的學生人數(shù)為  ,圖1m的值是  ;

2)求本次調(diào)查獲取的樣本數(shù)據(jù)的平均數(shù)、眾數(shù)和中位數(shù);

3)根據(jù)樣本數(shù)據(jù),估計該校本次活動捐款金額為5元的學生人數(shù).

【答案】150;32;(2)平均數(shù)為6.56元,眾數(shù)為5元;中位數(shù)為5元;(3)該校本次活動捐款金額為5元的學生人數(shù)為504人.

【解析】

1)根據(jù)條形圖可得接受隨機抽樣調(diào)查的學生人數(shù),用5元的人數(shù)除以總數(shù)可得m%,進而可得m的值;(2)根據(jù)平均數(shù)、眾數(shù)和中位數(shù)定義進行計算即可;(3)利用樣本估計總體的方法進行計算.

1)接受隨機抽樣調(diào)查的學生人數(shù)為:4+12+16+10+850(人),

m%×100%32%,

m32,

故答案為:50;32;

2)平均數(shù):(4×1+12×2+16×5+10×10+15×8)÷506.56(元),

眾數(shù):5元;

中位數(shù):5元;

32100×24%504(人)

答:該校本次活動捐款金額為5元的學生人數(shù)為504人.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,拋物線yax2+bx+2a0)與x軸交于A,B兩點(點A在點B的左側(cè)),與y軸交于點C,拋物線經(jīng)過點D(﹣2,﹣3)和點E3,2),點P是第一象限拋物線上的一個動點.

1)求直線DE和拋物線的表達式;

2)在y軸上取點F0,1),連接PF,PB,當四邊形OBPF的面積是7時,求點P的坐標;

3)在(2)的條件下,當點P在拋物線對稱軸的右側(cè)時,直線DE上存在兩點MN(點M在點N的上方),且MN2,動點Q從點P出發(fā),沿PMNA的路線運動到終點A,當點Q的運動路程最短時,請直接寫出此時點N的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩地高速鐵路建設(shè)成功,一列動車從甲地開往乙地,一列普通列車從乙地開往甲地,兩車均勻速行駛并同時出發(fā),設(shè)普通列車行駛的時間為x(小時),兩車之間的距離為y(千米),圖中的折線表示yx之間的函數(shù)關(guān)系,下列說法:

①甲、乙兩地相距1800千米;

②點B的實際意義是兩車出發(fā)后4小時相遇;

m6,n900;

④動車的速度是450千米/小時.

其中不正確的是( 。

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在等腰△ABC中,AB=AC=5,BC=6.動點M、N分別在兩腰AB、AC上(M不與A、B重合,N不與A、C重合),且MN∥BC.將△AMN沿MN所在的直線折疊,使點A的對應(yīng)點為P.

(1)當MN為何值時,點P恰好落在BC上?

(2)當MN=x,△MNP與等腰△ABC重疊部分的面積為y,試寫出yx的函數(shù)關(guān)系式.當x為何值時,y的值最大,最大值是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,設(shè)二次函數(shù),其中

(1)若函數(shù)的圖象經(jīng)過點,求函數(shù)的表達式;

(2)若一次函數(shù)的圖象與函數(shù)的圖象經(jīng)過軸上同一點,探究實數(shù)滿足的關(guān)系式;若的變化能取得最大值,證明:當取得最大值時,拋物線軸只有一個交點;

(3)已知點在函數(shù)的圖象上,若,求的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一次函數(shù)片的圖象如圖所示,下列說法:

ab0; 

②函數(shù)yax+d不經(jīng)過第一象限;

③函數(shù)ycx+b中,yx的增大而增大;

3a+b3c+d

其中正確的個數(shù)有()

A.4B.3C.2D.1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中,∠ADC的平分線與AB交于E,點FDE的延長線上,∠BFE=90°,連接AF、CF,CFAB交于G.有以下結(jié)論:

①AE=BC

②AF=CF

③BF2=FGFC

④EGAE=BGAB

其中正確的個數(shù)是(  )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,菱形ABCD的周長為20cm,對角線AC=8cm,直線l從點A出發(fā),以1cm/s的速度沿AC向右運動,直到過點C為止在運動過程中,直線l始終垂直于AC,若平移過程中直線l掃過的面積為Scm2),直線l的運動時間為ts),則下列最能反映St之間函數(shù)關(guān)系的圖象是( 。

A.B.

C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,∠ACB90°,AO平分∠BAC,交BC于點O.以O為圓心,OC為半徑作⊙O,分別交AO,BC于點EF

1)求證:AB是⊙O的切線;

2)延長AO交⊙O于點D,連接CD,若AD2AC,求tanD的值;

3)在(2)的條件下,設(shè)⊙O的半徑為3,求BC的長.

查看答案和解析>>

同步練習冊答案