【題目】已知為等邊三角形,點為直線上的一動點(點不與重合),以為邊作菱形、、按逆時針排列),使,連接

如圖,當點在邊上時,求證:;②;

如圖,當點在邊的延長線上且其他條件不變時,結(jié)論是否成立?若不成立,請寫出、之間存在的數(shù)量關(guān)系,并說明理由;

如圖,當點在邊的延長線上且其他條件不變時,補全圖形,并直接寫出、之間存在的數(shù)量關(guān)系.

【答案】(1)①見解析;②見解析;(2)不成立;(3).

【解析】

(1)根據(jù)已知得出AF=AD,AB=BC=AC,∠BAC=∠DAF=60°,求出∠BAD=CAF,證△BAD≌△CAF,推出CF=BD即可;

(2)求出∠BAD=∠CAF,根據(jù)SAS證△BAD≌△CAF,推出BD=CF即可;

(3)畫出圖形后,根據(jù)SAS證△BAD≌△CAF,推出CF=BD即可.

∵菱形

,

是等邊三角形,

,,

,

,

∵在

,

,

,

即①,

不成立,、之間存在的數(shù)量關(guān)系是

理由是:由知:,,,

,

,

∵在

,

,

.理由是:

,

,

∵在

,

,

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC是邊長為6cm的等邊三角形,動點P,Q同時從A,B兩點出發(fā),分別在ABBC邊上勻速移動,它們的速度分別為=2cm/s,=1cm/s,當點P到達點B時,P,Q兩點同時停止運動,設點P的運動時間為t秒.

1)用含t的代數(shù)式表示BP=______BQ=_______;

2)當t為何值時,BPQ為等邊三角形?

3)當t為何值時,BPQ為直角三角形?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知△ABC中,AB=AC=10cm,BC=8cm,∠B=C,DAB的中點.

(1)如果點P在線段BC上以3cm/s的速度由B點向C點運動,同時,點Q在線段CA上由C點向A點運動.

①若點Q的運動速度與點P的運動速度相等,經(jīng)過1s后,△BPD與△CQP是否全等,請說明理由;

②若點Q的運動速度與點P的運動速度不相等,當點Q的運動速度為時________cm/s,在運動過程中能夠使△BPD與△CQP全等.(直接填答案)

(2)若點Q以②中的運動速度從點C出發(fā),點P以原來的運動速度從點B同時出發(fā),都逆時針沿△ABC三邊運動,求經(jīng)過多長時間點P與點Q第一次在△ABC的哪條邊上相遇?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知關(guān)于的方程

為何值時,此方程是一元一次方程?

為何值時,此方程是一元二次方程?并寫出一元二次方程的二次項系數(shù)、一次項系數(shù)及常數(shù)項.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】鄰邊不相等的平行四邊形紙片,剪去一個菱形,余下一個四邊形,稱為第一次操作;在余下的四邊形紙片中再剪去一個菱形,又剩下一個四邊形,稱為第二次操作;依此類推,若第次操作余下的四邊形是菱形,則稱原平行四邊形為階準菱形.如圖,中,若,則階準菱形.

判斷與推理:

鄰邊長分別為的平行四邊形是________階準菱形;

小明為了剪去一個菱形,進行了如下操作:如圖,把沿折疊(點上),使點落在邊上的點,得到四邊形請證明四邊形是菱形.

操作、探究與計算:

已知的鄰邊長分別為,且是階準菱形,請畫出及裁剪線的示意圖,并在圖形下方寫出的值;

已知的鄰邊長分別為,,滿足,,請寫出是幾階準菱形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知:∠BAC的平分線與BC的垂直平分線DG相交于點D,DE⊥AB,DF⊥AC,垂足分別為E、F,AB=6,AC=3,則BE=_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】ABC在平面直角坐標系中的位置如圖所示.A(2,3),B(3,1),C(-2,-2)三點在格點上.

1)作出△ABC關(guān)于y軸對稱的△A1B1C1;

2)直接寫出△ABC關(guān)于x軸對稱的△A2B2C2的各點坐標;

3)求出△ABC的周長。.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一天爺爺和小強去爬山,小強讓爺爺先上, 圖中兩條線段分別表示兩人離開山腳的距離()與爬山所用時間()的關(guān)系,看圖回答問題:

①小強讓爺爺先上______米,________ (小強爺爺") 先爬上山頂;

②求小強離開山腳的距離()與爬山所用時間()的函數(shù)解析式及定義域;

③爺爺?shù)钠骄俣葹?/span>_______/.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一位籃球運動員在距籃球筐下米處跳起投籃,球的運行線路為拋物線,當球運行到水平距離為米時達到最高高度米,然后準確地落入籃筐,已知籃圈中心到地面的高度為米,該運動員的身高為米,在這次投籃中,球在該運動員的頭頂上方米處出手,則當球出手時,該運動員離地面的高度為________米.

查看答案和解析>>

同步練習冊答案