【題目】在中,,以為直徑的交于點(diǎn),交于點(diǎn),為延長(zhǎng)線上一點(diǎn),且,連接.
(1)求證:是的切線;
(2)若,,求的長(zhǎng).
【答案】(1)見解析 (2)12
【解析】
(1)連接AD,求出∠PBC=∠BAD,求出∠ABP=90°,根據(jù)切線的判定得出即可;
(2)解直角三角形求出BD,求出BC,根據(jù)勾股定理求出AD,根據(jù)三角形ABC的面積=即可求出BE的長(zhǎng).
(1)證明:連接AD,
∵AB為直徑,
∴∠ADB=90°,
∵AB=AC,
∴,
∵
∴∠PBC=∠BAD
∵∠BAD+∠ABD=90°
∴∠PBC+∠ABD=90°
∴AB⊥BP,
∴BP是⊙O的切線.
(2)解:由(1)知∠PBC=∠BAD,∠ADB=90°,
∴,
在Rt△ABD中,∵,AB=15
即,解得
∴
∵∠ADB=90°,AB=AC,
∴
∵AB為直徑,
∴∠AEB=90°
∴
即
∴BE=12
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是的直徑,C是上一點(diǎn),D是的中點(diǎn),為延長(zhǎng)線上一點(diǎn),AE切于A,AC與BD交于點(diǎn)H,與OE交于點(diǎn)F,連結(jié)EC.
(1)求證:EC是的切線;
(2)若DH=9,,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某茶具店購(gòu)進(jìn)了A、B兩種不同的茶具,1套A種茶具和2套B種茶具共需250元;3套A種茶具和4套B種茶具共需600元.
(1)求A、B兩種茶具每套的進(jìn)價(jià)分別是多少元?
(2)由于茶具暢銷,茶具店準(zhǔn)備再購(gòu)進(jìn)A、B兩種茶具共80套,但這次進(jìn)貨時(shí),工廠對(duì)A種茶具每套進(jìn)價(jià)提高了8%,而B種茶具每套按第一次進(jìn)價(jià)的八折,若茶具店本次進(jìn)貨總錢數(shù)不超過6240元,則最多可進(jìn)A種茶具幾套?
(3)若銷售一套A種茶具可獲利30元,銷售一套B種茶其可獲利20元,在(2)的條件下,如何進(jìn)貨可使本次購(gòu)進(jìn)茶具獲利最多?最多是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某超市用3 000元購(gòu)進(jìn)某種干果銷售,由于銷售狀況良好,超市又調(diào)撥9 000元購(gòu)進(jìn)該種干果,但這次的進(jìn)價(jià)比第一次的進(jìn)價(jià)提高了20%,購(gòu)進(jìn)干果數(shù)量比第一次的2倍還多300 kg.如果超市按9元/kg的價(jià)格出售,當(dāng)大部分干果售出后,余下的600 kg按售價(jià)的八折售完.
(1)該種干果第一次的進(jìn)價(jià)是多少?
(2)超市銷售這種干果共盈利多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,延長(zhǎng)至點(diǎn),使,連接.
(1)求證:四邊形是矩形;
(2)連接交于點(diǎn),連接,若,,請(qǐng)你直接寫出的值(不要求寫過程)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,E是AD的中點(diǎn),將△ABE沿BE折疊使點(diǎn)A落在點(diǎn)G處,延長(zhǎng)BG交CD于點(diǎn)F,連接EF,若CF=1,DF=2,則BC的長(zhǎng)是( )
A.3B.C.5D.2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,直線y=﹣x+2與x軸,y軸分別交于A,B兩點(diǎn),以A為頂點(diǎn)的拋物線經(jīng)過點(diǎn)B,點(diǎn)P是拋物線上一點(diǎn),連接OP,AP.
(1)求拋物線的解析式;
(2)若△AOP的面積是3,求P點(diǎn)坐標(biāo);
(3)如圖②,動(dòng)點(diǎn)M,N同時(shí)從點(diǎn)O出發(fā),點(diǎn)M以1個(gè)單位長(zhǎng)度/秒的速度沿x軸正半軸方向勻速運(yùn)動(dòng),點(diǎn)N以個(gè)單位長(zhǎng)度/秒的速度沿y軸正半軸方向勻速運(yùn)動(dòng),當(dāng)其中一個(gè)動(dòng)點(diǎn)停止運(yùn)動(dòng)時(shí),另一個(gè)動(dòng)點(diǎn)也隨之停止運(yùn)動(dòng),過點(diǎn)N作NE∥x軸交直線AB于點(diǎn)E.若設(shè)運(yùn)動(dòng)時(shí)間為t秒,是否存在某一時(shí)刻,使四邊形AMNE是菱形?若存在,求出t的值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,正方形ABCD中,點(diǎn)O是對(duì)角線AC的中點(diǎn),點(diǎn)P是線段AO上(不與點(diǎn)A,O重合)的一個(gè)動(dòng)點(diǎn),過點(diǎn)P作PE⊥PB且PE交邊CD于點(diǎn)E.
(1)求證:PE=PB;
(2)如圖2,若正方形ABCD的邊長(zhǎng)為2,過點(diǎn)E作EF⊥AC于點(diǎn)F,在點(diǎn)P運(yùn)動(dòng)的過程中,PF的長(zhǎng)度是否發(fā)生變化?若不變,試求出這個(gè)不變的值;若變化,請(qǐng)說明理由;
(3)用等式表示線段PC,PA,CE之間的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,以Rt△ABC的AC邊為直徑作⊙O交斜邊AB于點(diǎn)E,連接EO并延長(zhǎng)交BC的延長(zhǎng)線于點(diǎn)D,點(diǎn)F為BC的中點(diǎn),連接EF和AD.
(1)求證:EF是⊙O的切線;
(2)若⊙O的半徑為2,∠EAC=60°,求AD的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com