【題目】如圖,矩形ABCD中,EAD的中點,將ABE沿BE折疊使點A落在點G處,延長BGCD于點F,連接EF,若CF1DF2,則BC的長是(   )

A.3B.C.5D.2

【答案】D

【解析】

首先過點EEMBCM,交BFN,易證得ENG≌△BNMAAS),MNBCF的中位線,根據(jù)全等三角形的性質(zhì),即可求得GN=MN,由折疊的性質(zhì),可得BG=3,繼而求得BF的值,又由勾股定理,即可求得BC的長.

解:過點EEMBCM,交BFN

∵四邊形ABCD是矩形,

∴∠A=ABC=90°AD=BC,

∵∠EMB=90°, ∴四邊形ABME是矩形,

AE=BM 由折疊的性質(zhì)得:AE=GE,∠EGN=A=90°,

EG=BM,

∵∠ENG=BNM,

∴△ENG≌△BNMAAS),

NG=NM,

EAD的中點, AE=ED=BM=CM,

EMCD

BNNF=BMCM

BN=NF,

NM=CF=,

NG=,

BG=AB=CD=CF+DF=3,

BN=BG-NG=3-=,

BF=2BN=5,

BC=

故選:D

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】無影塔位于河南汝南城南,俗傳冬至正午無塔影,故稱無影塔;相傳為唐代和尚悟顆所建,故又稱悟穎塔,該塔應(yīng)建于北宋中、早期,為豫南地區(qū)現(xiàn)存最古之磚塔.某數(shù)學(xué)小組為了度量塔高進行了如下操作:用一架無人機在距離塔基8米處垂直起飛30米至點處,測得塔基處的俯角為,將無人機沿水平方向向右飛行米至點,在此處測得塔頂的俯角為,請依據(jù)題中數(shù)據(jù)計算無影塔的高度.(結(jié)果精確到,參考數(shù)據(jù):

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我市某初中課外興趣活動小組對某水稻品種的稻穗谷粒數(shù)目進行調(diào)查,從試驗田中隨機抽取了30株,得到的數(shù)據(jù)如下(單位:顆):

182

195

201

179

208

204

186

192

210

204

175

193

200

203

188

197

212

207

185

206

188

186

198

202

221

199

219

208

187

224

1)對抽取的30株水稻稻穗谷粒數(shù)進行統(tǒng)計分析,請補全下表中空格,并完善直方圖:

谷粒顆數(shù)

175≤x185

185≤x195

195≤x205

205≤x215

215≤x225

頻數(shù)

8

10

3

對應(yīng)扇形

圖中區(qū)域

D

E

C

2)如圖所示的扇形統(tǒng)計圖中,扇形A對應(yīng)的圓心角為   度,扇形B對應(yīng)的圓心角為  度;

3)該試驗田中大約有3000株水稻,據(jù)此估計,其中稻穗谷粒數(shù)大于或等于205顆的水稻有多少株?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,AB兩個頂點在x軸上方,點C的坐標(biāo)是(1,0),以點C為位似中心,在x軸的下方作△ABC的位似圖形,并把△ABC的邊長放大到原來的2倍,得到△A'B'C',設(shè)點B的對應(yīng)點B'的橫坐標(biāo)為2,則點B的橫坐標(biāo)為(  )

A.1B.C.2D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】中,,以為直徑的于點,交于點,延長線上一點,且,連接

1)求證:的切線;

2)若,,求的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠BAC90°,以AB為直徑的⊙OBC于點E,且點E的中點,連接ADBE于點F,連接EA,ED

1)求證:ACAF

2)若EF2,BF8,求AF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某地為了了解2020年在疫情中上網(wǎng)課的感受,組織教師通過問卷和座談等形式,隨機抽取某城區(qū)一些初中學(xué)生進行調(diào)查,并將調(diào)查的普遍感受分為四大類:A.提高自律能力;B.戰(zhàn)親子關(guān)系;C.提升信息素養(yǎng);D.教師敬業(yè)辛苦,并將調(diào)查結(jié)果繪制成頻數(shù)折線統(tǒng)計圖1和扇形統(tǒng)計圖2(不完整).請根據(jù)圖中提供的信息,解答下列問題:

1)此次抽樣調(diào)查中,共調(diào)查了__________名初中學(xué)生;

2)求出圖2中扇形C所對的圓心角的度數(shù),并將圖1補充完整;

3)根據(jù)抽樣調(diào)查結(jié)果,請你估計該城區(qū)1000名初中學(xué)生中有多少人的感受是教師敬業(yè)辛苦

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,矩形的頂點、分別在、軸的正半軸上,頂點的坐標(biāo)為.點是邊上的一個動點(不與重合),反比例函數(shù) 的圖象經(jīng)過點且與邊交于點,連接

1)當(dāng)點是邊的中點時,求反比例函數(shù)的表達(dá)式

2)在點的運動過程中,試證明:是一個定值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,為放置在水平桌面上的臺燈,底座的高.長度均為的連桿始終在同一水平面上.

1)旋轉(zhuǎn)連桿,,使成平角,,如圖2,求連桿端點離桌面的高度.

2)將(1)中的連桿繞點逆時針旋轉(zhuǎn),使,如圖3,問此時連桿端點離桌面的高度是增加了還是減少?增加或減少了多少?(精確到,參考數(shù)據(jù):,

查看答案和解析>>

同步練習(xí)冊答案