【題目】如圖,AB=AC,CD⊥AB于點D,BE⊥AC于點E,BE與CD相交于點O.
(1)求證:AD=AE;
(2)試猜想:OA與BC的位置關系,并加以證明.
【答案】
(1)證明:∵CD⊥AB,BE⊥AC,
∴∠ADC=∠AEB=90°,
△ACD和△ABE中,
∵
∴△ACD≌△ABE(AAS),
∴AD=AE
(2)猜想:OA⊥BC.
證明:連接OA、BC,
∵CD⊥AB,BE⊥AC,
∴∠ADC=∠AEB=90°.
在Rt△ADO和Rt△AEO中,
∵
∴Rt△ADO≌Rt△AEO(HL).
∴∠DAO=∠EAO,
又∵AB=AC,
∴OA⊥BC.
【解析】(1)根據(jù)AAS推出△ACD≌△ABE,根據(jù)全等三角形的性質(zhì)得出即可;(2)證Rt△ADO≌Rt△AEO,推出∠DAO=∠EAO,根據(jù)等腰三角形的性質(zhì)推出即可.
科目:初中數(shù)學 來源: 題型:
【題目】有A,B兩個黑布袋,A布袋中有兩個完全相同的小球,分別標有數(shù)字1和2.B 布袋中有三個完全相同的小球,分別標有數(shù)字-1,-2和-3.小明從A布袋中隨機取出一個小球,記錄其標有的數(shù)字為x,再從B布袋中隨機取出一個小球,記錄其標有的數(shù)字為y,這樣就確定點Q的一個坐標為.
(1)用列表或畫樹狀圖的方法寫出點Q的所有可能坐標;
(2)求點Q落在拋物線y=x2-2x-1上的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】游泳是一項深受青少年喜愛的體育活動,學校為了加強學生的安全意識,組織學生觀看了紀實片“孩子,請不要私自下水”,并于觀看后在本校的2000名學生中作了抽樣調(diào)查.請根據(jù)下面兩個不完整的統(tǒng)計圖回答以下問題:
(1)這次抽樣調(diào)查中,共調(diào)查了 名學生;
(2)“家長陪同時會”的學生所占比例為 %,“一定不會”的學生有 人;
(3)根據(jù)抽樣調(diào)查的結果,估算該校2000名學生中大約有多少人“一定會下河游泳”?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB=AC,添加下列條件,不能使△ABE≌△ACD的是( )
A.∠B=∠C
B.∠AEB=∠ADC
C.AE=AD
D.BE=DC
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某通訊公司推出①、②兩種通訊收費方式供用戶選擇,其中一種有月租費,另一種無月租費,且兩種收費方式的通訊時間x(分鐘)與收費y(元)之間的函數(shù)關系如圖所示.
(1)有月租費的收費方式是(填①或②),月租費是元;
(2)分別求出①、②兩種收費方式中y與自變量x之間的函數(shù)關系式;
(3)請你根據(jù)用戶通訊時間的多少,給出經(jīng)濟實惠的選擇建議.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小麗和爸爸一起玩投籃球游戲,兩人商定規(guī)則為:小麗投中1個得3分,爸爸投中1個得1分,結果兩人一共投中了20個,得分剛好相等.小麗投中了_____個.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】問題發(fā)現(xiàn):如圖1,在△ABC中,∠C=90°,分別以AC,BC為邊向外側作正方形ACDE和正方形BCFG.
(1)△ABC和△DCF面積的關系是______________;(請在橫線上填寫“相等”或“不等”)
(2)拓展探究:若∠C≠90°,(1)中的結論還成立嗎?若成立,請結合圖2給出證明;若不成立,請說明理由;
(3)解決問題:如圖3,在四邊形ABCD中,AC⊥BD,且AC與BD的和為10,分別以四邊形ABCD的四條邊為邊向外側作正方形ABFE、正方形BCHG、正方形CDJI,正方形DALK,運用(2)的結論,圖中陰影部分的面積和是否有最大值?如果有,請求出最大值,如果沒有,請說明理由.
圖1
圖2
圖3
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com