【題目】如圖,Rt△ABC中,AB=6,AC=8.動(dòng)點(diǎn)E,F同時(shí)分別從點(diǎn)A,B出發(fā),分別沿著射線AC和射線BC的方向均以每秒1個(gè)單位的速度運(yùn)動(dòng),連接EF,以EF為直徑作⊙O交射線BC于點(diǎn)M,連接EM,設(shè)運(yùn)動(dòng)的時(shí)間為t(t>0).
(1)當(dāng)點(diǎn)E在線段AC上時(shí),用關(guān)于t的代數(shù)式表示CE= ,CM= .(直接寫出結(jié)果)
(2)在整個(gè)運(yùn)動(dòng)過程中,當(dāng)t為何值時(shí),以點(diǎn)E、F、M為頂點(diǎn)的三角形與以點(diǎn)A、B、C為頂點(diǎn)的三角形相似?
【答案】(1)8-t, ;(2) t的值為s或s.
【解析】
(1)當(dāng)點(diǎn)E在線段AC上時(shí),0<t≤8.根據(jù)題意,可知AE=t,則CE=AC-AE=8-t,利用圓周角定理得∠EMF=90°.則可證得△CEM∽△CBA,利用相似比可表示出CM;
(2)討論:當(dāng)E點(diǎn)在線段AC上,(0<t≤8),先由△CEM∽△CBA,利用相似比可表示出,則FM=,①若∠EFM=∠B時(shí),△MFE∽△ABC,利用相似比可求出t=0(舍去);②若∠EFM=∠ACB時(shí),△MEF∽△ABC,利用相似比可求得t=(s);分情況進(jìn)行討論即可;
解:(1)如圖1中,當(dāng)點(diǎn) E 在線段 AC 上時(shí),0<t≤8.根據(jù)題意,可知 AE=t,則 CE=AC﹣AE=8﹣t.
∵EF 為直徑,
∴∠EMF=90°.
∵∠ECM=∠BCA,
∴△CEM∽△CBA,
∴,即,
∴,
故答案為:8﹣t,.
(2)∵△CEM∽△CBA,
∴,
即,
解得,
∴FM=BC﹣BF﹣CM=10﹣t﹣=,
當(dāng)E點(diǎn)在線段 AC 上,(0<t≤8),
①如圖1中,若∠EFM=∠B時(shí),△MFE∽△ABC,
∴,
即,解得t=0(舍去).
②若∠EFM=∠ACB時(shí),△MEF∽△ABC,
∴
即,解得t=(成立).
當(dāng)E點(diǎn)在線段AC的延長線上,8<t≤10,如圖2中,
顯然EM<CM≤FM,∴△MFE∽△ABC不成立,
只有△MFE∽△ACB,當(dāng)點(diǎn)F運(yùn)動(dòng)到C點(diǎn)時(shí),
∵∠EFM=∠ACB,∠CME=∠A,
∴△MEF∽△ABC,此時(shí)t=10(成立);
當(dāng)t>10時(shí),由題意ME=(t﹣8),FM=BC+CM﹣BF=10+(8﹣t)﹣t=,
若△MFE∽△ABC,此時(shí)∠EFM=∠B,則=,即(8﹣t):=3:4,
解得t=(成立),
若△MEF∽△ABC,此時(shí)∠EFM=∠ACB,則=,即(t﹣8):=3:4,
解得t=10(舍棄),
綜上所述,滿足條件的t的值為s或s.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,對于不在坐標(biāo)軸上的任意一點(diǎn)P(x,y),我們把的P'(,)稱為點(diǎn)P的“倒影點(diǎn)”.直線y=﹣2x+1上有兩點(diǎn)A、B,它們的倒影點(diǎn)A'、B'均在反比例函數(shù)y的圖象上,若AB,則k的值為( )
A.B.C.5D.10
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(2013年四川資陽11分)在一個(gè)邊長為a(單位:cm)的正方形ABCD中,點(diǎn)E、M分別是線段AC,CD上的動(dòng)點(diǎn),連結(jié)DE并延長交正方形的邊于點(diǎn)F,過點(diǎn)M作MN⊥DF于H,交AD于N.
(1)如圖1,當(dāng)點(diǎn)M與點(diǎn)C重合,求證:DF=MN;
(2)如圖2,假設(shè)點(diǎn)M從點(diǎn)C出發(fā),以1cm/s的速度沿CD向點(diǎn)D運(yùn)動(dòng),點(diǎn)E同時(shí)從點(diǎn)A出發(fā),以cm/s速度沿AC向點(diǎn)C運(yùn)動(dòng),運(yùn)動(dòng)時(shí)間為t(t>0);
①判斷命題“當(dāng)點(diǎn)F是邊AB中點(diǎn)時(shí),則點(diǎn)M是邊CD的三等分點(diǎn)”的真假,并說明理由.
②連結(jié)FM、FN,△MNF能否為等腰三角形?若能,請寫出a,t之間的關(guān)系;若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△ABC中,∠ACB=90°,以AC為直徑作⊙O,D為⊙O上一點(diǎn),連接AD、BD、CD、OB,且BD=AB.
(1)求證:OB//CD;
(2)若D為弧AC的中點(diǎn),求tan∠BDC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】隨著粵港澳大灣區(qū)建設(shè)的加速推進(jìn),廣東省正加速布局以5G等為代表的戰(zhàn)略性新興產(chǎn)業(yè),據(jù)統(tǒng)計(jì),目前廣東5G基站的數(shù)量約1.5萬座,計(jì)劃到2020年底,全省5G基站數(shù)是目前的4倍,到2022年底,全省5G基站數(shù)量將達(dá)到17.34萬座。
(1)計(jì)劃到2020年底,全省5G基站的數(shù)量是多少萬座?;
(2)按照計(jì)劃,求2020年底到2022年底,全省5G基站數(shù)量的年平均增長率。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,直線與軸交于點(diǎn),與軸交于點(diǎn),拋物線()經(jīng)過點(diǎn)、B.
(1)求、滿足的關(guān)系式及的值.
(2)當(dāng)時(shí),若()的函數(shù)值隨的增大而增大,求的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于x的一元二次方程x2+3x+m-1=0的兩個(gè)實(shí)數(shù)根分別為x1,x2.
(1)求m的取值范圍.
(2)若2(x1+x2)+ x1x2+10=0.求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在正方形ABCD中,點(diǎn)E是BC邊上一點(diǎn),連接AE.
(1)如圖1,點(diǎn)F為AE的中點(diǎn),連接CF.已知tan∠FBE=,BF=5,求CF的長;
(2)如圖2,過點(diǎn)E作AE的垂線交CD于點(diǎn)G,交AB的延長線于點(diǎn)H,點(diǎn)O為對角線AC的中點(diǎn),連接GO并延長交AB于點(diǎn)M,求證:AM+BH=BE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形是正方形,是邊的中點(diǎn),是邊上的一動(dòng)點(diǎn),下列條件中,,△ABP不與△ECP相似的是( )
A.B.
C.D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com