【題目】如圖1,在四邊形中,∥,,直線.當直線沿射線方向,從點開始向右平移時,直線與四邊形的邊分別相交于點、.設(shè)直線向右平移的距離為,線段的長為,且與的函數(shù)關(guān)系如圖2所示,則四邊形的周長是_____.
【答案】
【解析】
根據(jù)圖1直線l的平移過程分為三段,當F與A重合之前,x與y都不斷增大,當當F與A重合之后到點E與點C重合之前,x增加y不變,E與點C重合后繼續(xù)運動至F與D重合x增加y減小.結(jié)合圖2可知BC=5,AD=7-4=3,由且∠B=30°可知AB=,當F與A重合時,把CD平移到E點位置可得三角形AED′為正三角形,可得CD=2,進而可求得周長.
由題意和圖像易知BC=5,AD=7-4=3
當BE=4時(即F與A重合),EF=2
又∵且∠B=30°
∴AB=,
∵當F與A重合時,把CD平移到E點位置可得三角形AED′為正三角形
∴CD=2
∴AB+BC+CD+AD=+5+2+3=10+
故答案時.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)閱讀理解
如圖,點,在反比例函數(shù)的圖象上,連接,取線段的中點.分別過點,,作軸的垂線,垂足為,,,交反比例函數(shù)的圖象于點.點,,的橫坐標分別為,,.小紅通過觀察反比例函數(shù)的圖象,并運用幾何知識得出結(jié)論:AE+BG=2CF,CF>DF,由此得出一個關(guān)于,,之間數(shù)量關(guān)系的命題:若,則______.
(2)證明命題
小東認為:可以通過“若,則”的思路證明上述命題.
小晴認為:可以通過“若,,且,則”的思路證明上述命題.
請你選擇一種方法證明(1)中的命題.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,已知在平面直角坐標系中,四邊形是矩形點分別在軸和軸的正半軸上,連結(jié),,,是的中點.
(1)求OC的長和點的坐標;
(2)如圖2,是線段上的點,,點是線段上的一個動點,經(jīng)過三點的拋物線交軸的正半軸于點,連結(jié)交于點
①將沿所在的直線翻折,若點恰好落在上,求此時的長和點的坐標;
②以線段為邊,在所在直線的右上方作等邊,當動點從點運動到點時,點也隨之運動,請直接寫出點運動路徑的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】圖1是某酒店的推拉門,已知門的寬度AD=2米,兩扇門的大小相同(即AB=CD),且AB+CD=AD,現(xiàn)將右邊的門CDD1C1繞門軸DD1向外面旋轉(zhuǎn)67°(如圖2所示).
參考數(shù)據(jù):(sin67°≈0.92,cos67°≈0.39,tan29.6°≈0.57,tan19.6°≈0.36,sin29.6°≈0.49)
(1)求點C到直線AD的距離.
(2)將左邊的門ABB1A1繞門軸AA1向外面旋轉(zhuǎn),設(shè)旋轉(zhuǎn)角為a(如圖3所示),問當a為多少度時,點B,C之間的距離最短.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)的圖象與反比例函數(shù)的圖象相交于、兩點,其中點的坐標為,點的坐標為.
(1)根據(jù)圖象,直接寫出滿足的的取值范圍;
(2)求這兩個函數(shù)的表達式;
(3)點在線段上,且,求點的坐標.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是菱形的對角線,分別是邊的中點,連接,,則下列結(jié)論錯誤的是( )
A. B. C. 四邊形是菱形D. 四邊形是菱形
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某品牌筆記本電腦的售價是5000元/臺。最近,該商家對此型號筆記本電腦舉行促銷活動,有兩種優(yōu)惠方案。方案一:每臺按售價的九折銷售;方案二:若購買不超過5臺,每臺按售價銷售;若超過5臺,超過的部分每臺按售價的八折銷售。
設(shè)公司一次性購買此型號筆記本電腦臺。
Ⅰ.根據(jù)題意,填寫下表:
購買臺數(shù) | 3 | 10 | 20 | … |
方案一的總費用(元) | 13500 | 45000 | 90000 | … |
方案二的總費用(元) | 15000 | … |
Ⅱ.設(shè)選擇方案一的費用為元,選擇方案二的費用為元,分別寫出關(guān)于的函數(shù)關(guān)系式;
Ⅲ.當時,該公司采用哪種方案購買更合算?并說明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O的直徑AB=10,弦AC=8,連接BC。
(1)尺規(guī)作圖:作弦CD,使CD=BC(點D不與B重合),連接AD;(保留作圖痕跡,不寫作法)
(2)在(1)所作的圖中,求四邊形ABCD的周長。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,.點是線段上的一點,連結(jié),過點作,分別交、于點、,與過點且垂直于的直線相交于點,連結(jié).給出以下四個結(jié)論:①;②若點是的中點,則;③當、、、四點在同一個圓上時,;④若,則.其中正確的結(jié)論序號是( )
A. ①②B. ①②③C. ③④D. ①②③④
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com