【題目】在平面直角坐標(biāo)系中,正方形的點(diǎn),,,現(xiàn)將此正方形繞逆時(shí)針旋轉(zhuǎn),得到正方形,求正方形各頂點(diǎn)的坐標(biāo).
【答案】,,,.
【解析】
作A1D⊥x軸于D,C1E⊥x軸于E,如圖,根據(jù)正方形的性質(zhì)得OB=2,∠BOA=∠BOC=45°,再根據(jù)旋轉(zhuǎn)的性質(zhì)得點(diǎn)B1在y軸上,OB1=OB=2,∠A1OD=45°,∠B1OC1=45°,OA1=OA=OC1=2,則可判斷△A1OD和△EOC1都是等腰直角三角形,于是可根據(jù)等腰直角三角形的性質(zhì)得到A1D=OD=OA1=,C1E=OE=OC1=,然后根據(jù)各象限點(diǎn)的坐標(biāo)特征和y軸上點(diǎn)的坐標(biāo)特征寫(xiě)出正方形OA1B1C1各頂點(diǎn)的坐標(biāo).
解:作軸于,軸于,如圖,
∵正方形的點(diǎn),,,
∴,,
∴正方形繞逆時(shí)針旋轉(zhuǎn),得到正方形,
∴點(diǎn)在軸上,,,,,
∴和都是等腰直角三角形,
∴,,
∴,,,.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(題文)(題文)等邊在平面直角坐標(biāo)系中,已知點(diǎn),將繞點(diǎn)O順時(shí)針?lè)较蛐D(zhuǎn)得.
求出點(diǎn)B的坐標(biāo);
當(dāng)與的縱坐標(biāo)相同時(shí),求出a的值;
在的條件下直接寫(xiě)出點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,∠EAF=15°,,AB=BC=CD=DE=EF,則∠EDF等于( )
A.90°B.75°C.70°D.60°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足為D,AF平分∠CAB,交CD于點(diǎn)E,交CB于點(diǎn)F.若AC=6,AB=10,則DE的長(zhǎng)為______
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知在關(guān)于x的分式方程 ①和一元二次方程(2﹣k)x2+3mx+(3﹣k)n=0②中,k、m、n均為實(shí)數(shù),方程①的根為非負(fù)數(shù).
(1)求k的取值范圍;
(2)當(dāng)方程②有兩個(gè)整數(shù)根x1、x2,k為整數(shù),且k=m+2,n=1時(shí),求方程②的整數(shù)根;
(3)當(dāng)方程②有兩個(gè)實(shí)數(shù)根x1、x2,滿足x1(x1﹣k)+x2(x2﹣k)=(x1﹣k)(x2﹣k),且k為負(fù)整數(shù)時(shí),試判斷|m|≤2是否成立?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,AB=BC=AC=12cm,現(xiàn)有兩點(diǎn)M、N分別從點(diǎn)A. 點(diǎn)B同時(shí)出發(fā),沿三角形的邊運(yùn)動(dòng),已知點(diǎn)M的速度為1cm/s,點(diǎn)N的速度為2cm/s.當(dāng)點(diǎn)N第一次到達(dá)B點(diǎn)時(shí),M、N同時(shí)停止運(yùn)動(dòng).
(1)點(diǎn)M、N運(yùn)動(dòng)_________秒后,△AMN是等邊三角形?
(2)點(diǎn)M、N在BC邊上運(yùn)動(dòng)時(shí),運(yùn)動(dòng)_______秒后得到以MN為底邊的等腰三角形△AMN?
(3)M、N同時(shí)運(yùn)動(dòng)幾秒后,△AMN是直角三角形?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠C=90°,AC=BC=4cm,點(diǎn)D是斜邊AB的中點(diǎn),點(diǎn)E從點(diǎn)B出發(fā)以1cm/s的速度向點(diǎn)C運(yùn)動(dòng),點(diǎn)F同時(shí)從點(diǎn)C出發(fā)以一定的速度沿射線CA方向運(yùn)動(dòng),規(guī)定:當(dāng)點(diǎn)E到終點(diǎn)C時(shí)停止運(yùn)動(dòng);設(shè)運(yùn)動(dòng)的時(shí)間為x秒,連接DE、DF.
(1)填空:S△ABC= cm2;
(2)當(dāng)x=1且點(diǎn)F運(yùn)動(dòng)的速度也是1cm/s時(shí),求證:DE=DF;
(3)若動(dòng)點(diǎn)F以3cm/s的速度沿射線CA方向運(yùn)動(dòng);在點(diǎn)E、點(diǎn)F運(yùn)動(dòng)過(guò)程中,如果有某個(gè)時(shí)間x,使得△ADF的面積與△BDE的面積存在兩倍關(guān)系,請(qǐng)你直接寫(xiě)出時(shí)間x的值;
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】自年月日零時(shí)起,高鐵開(kāi)通,某旅行社為吸引廣大市民組團(tuán)去仙都旅游,推出了如下收費(fèi)標(biāo)準(zhǔn):如果人數(shù)不超過(guò)人,人均旅游費(fèi)用為元,如果人數(shù)超過(guò)人,每增加人,人均旅游費(fèi)用降低元,但人均旅游費(fèi)用不得低于元.
如果某單位組織人參加仙都旅游,那么需支付旅行社旅游費(fèi)用________元;
現(xiàn)某單位組織員工去仙都旅游,共支付給該旅行社旅游費(fèi)用元,那么該單位有多少名員工參加旅游?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,,是一條射線,,一只螞蟻由以速度向爬行,同時(shí)另一只螞蟻由點(diǎn)以的速度沿方向爬行,幾秒鐘后,兩只螞蟻與點(diǎn)組成的三角形面積為?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com