【題目】近日,嶗山區(qū)教體局對(duì)參加2018年嶗山區(qū)禁毒知識(shí)競(jìng)賽的2500名初中學(xué)生的初試成績(jī)(成績(jī)均為整數(shù))進(jìn)行一次抽樣調(diào)查,所得數(shù)據(jù)如下表:

成績(jī)分組

 60.570.5

 70.580.5

 80.590.5

 90.5100.5

頻數(shù)

 50

 150

 200

 100

1)抽取樣本的總?cè)藬?shù);

2)根據(jù)表中數(shù)據(jù),補(bǔ)全圖中頻數(shù)分布直方圖;

3)若規(guī)定初試成績(jī)?cè)?/span>90分以上(不包括90分)的學(xué)生進(jìn)入決賽,則全區(qū)進(jìn)入決賽的初中學(xué)生約有多少人.

【答案】1500;(2)見(jiàn)解析;(3500

【解析】

1)把表中的頻數(shù)相加即為抽取樣本的總?cè)藬?shù);

2)根據(jù)表中數(shù)據(jù),補(bǔ)全圖中頻數(shù)分布直方圖;

3)用樣本中成績(jī)?cè)?/span>90分以上(不包括90分)所占百分比去估計(jì)總體.

解:(1)抽取樣本的容量=50+150+200+100500

2)根據(jù)表中數(shù)據(jù),補(bǔ)全圖中頻數(shù)分布直方圖;

3)若規(guī)定初試成績(jī)?cè)?/span>90分以上(不包括90分)的學(xué)生進(jìn)入決賽,則全縣進(jìn)入決賽的學(xué)生約為2500×500人.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:在△ABC中,AC=BC∠ACB=90°,點(diǎn)DAB的中點(diǎn),點(diǎn)EAB邊上一點(diǎn).

1)直線(xiàn)BF垂直于直線(xiàn)CE于點(diǎn)F,交CD于點(diǎn)G(如圖1),求證:AE=CG;

2)直線(xiàn)AH垂直于直線(xiàn)CE,垂足為點(diǎn)H,交CD的延長(zhǎng)線(xiàn)于點(diǎn)M(如圖2),找出圖中與BE相等的線(xiàn)段,并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩個(gè)電子廠在廣告中都聲稱(chēng)他們的某種電子產(chǎn)品在正常情況下的使用壽命都是5年.質(zhì)檢部門(mén)對(duì)這兩家銷(xiāo)售的產(chǎn)品的使用壽命進(jìn)行了跟蹤調(diào)查,統(tǒng)計(jì)結(jié)果如下:(單位:年)

甲廠:3,4,5,6,7   乙廠:4,4,5,6,6

(1)分別求出甲、乙兩廠的該種電子產(chǎn)品在正常情況下的使用壽命的平均數(shù)和方差;

(2)如果你是顧客,你會(huì)選購(gòu)哪家電子廠的產(chǎn)品?說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某汽車(chē)運(yùn)輸公司根據(jù)實(shí)際需要計(jì)劃購(gòu)買(mǎi)大、中型兩種客車(chē)共20輛,已知大型客車(chē)每輛62萬(wàn)元,中型客車(chē)每輛40萬(wàn)元,設(shè)購(gòu)買(mǎi)大型客車(chē)x(輛),購(gòu)車(chē)總費(fèi)用為y(萬(wàn)元).

1)求yx的函數(shù)關(guān)系式(不要求寫(xiě)出自變量x的取值范圍);

2)若購(gòu)買(mǎi)中型客車(chē)的數(shù)量少于大型客車(chē)的數(shù)量,請(qǐng)你給出一種費(fèi)用最省的方案,并求出該方案所需費(fèi)用.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了解某區(qū)初二年級(jí)數(shù)學(xué)學(xué)科期末質(zhì)量監(jiān)控情況,進(jìn)行了抽樣調(diào)查,過(guò)程如下,請(qǐng)將有關(guān)問(wèn)題補(bǔ)充完整.

收集數(shù)據(jù):隨機(jī)抽取甲乙兩所學(xué)校的20名學(xué)生的數(shù)學(xué)成績(jī)進(jìn)行分析:

91

89

77

86

71

31

97

93

72

91

81

92

85

85

95

88

88

90

44

91

84

93

66

69

76

87

77

82

85

88

90

88

67

88

91

96

68

97

59

88

整理、描述數(shù)據(jù):按如下數(shù)據(jù)段整理、描述這兩組數(shù)據(jù)

分段

學(xué)校

30≤x≤39

40≤x≤49

50≤x≤59

60≤x≤69

70≤x≤79

80≤x≤89

90≤x≤100

1

1

0

0

3

7

8

   

   

   

   

   

   

   

分析數(shù)據(jù):兩組數(shù)據(jù)的平均數(shù)、中位數(shù)、眾數(shù)、方差如下表:

統(tǒng)計(jì)量

學(xué)校

平均數(shù)

中位數(shù)

眾數(shù)

方差

81.85

88

91

268.43

81.95

86

m

115.25

經(jīng)統(tǒng)計(jì),表格中m的值是   

得出結(jié)論:

a若甲學(xué)校有400名初二學(xué)生,估計(jì)這次考試成績(jī)80分以上人數(shù)為   

b可以推斷出   學(xué)校學(xué)生的數(shù)學(xué)水平較高,理由為   .(至少?gòu)膬蓚(gè)不同的角度說(shuō)明推斷的合理性)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】ABC中,AB=AC,CDBC于點(diǎn)C,交ABC的平分線(xiàn)于點(diǎn)D,AE平分BACBD于點(diǎn)E,過(guò)點(diǎn)EEFBCAC于點(diǎn)F,連接DF

(1)補(bǔ)全圖1;

(2)如圖1,當(dāng)∠BAC=90°時(shí),

求證:BE=DE

寫(xiě)出判斷DFAB的位置關(guān)系的思路(不用寫(xiě)出證明過(guò)程);

(3)如圖2,當(dāng)∠BAC=α時(shí),直接寫(xiě)出α,DF,AE的關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,點(diǎn)M的坐標(biāo)為,點(diǎn)N的坐標(biāo)為,且,,MN為邊構(gòu)造菱形,若該菱形的兩條對(duì)角線(xiàn)分別平行于x軸,y軸,則稱(chēng)該菱形為邊的“坐標(biāo)菱形”.

(1)已知點(diǎn)A(2,0),B(0,2),則以AB為邊的“坐標(biāo)菱形的最小內(nèi)角為_(kāi)______;

(2)若點(diǎn)C(1,2),點(diǎn)D在直線(xiàn)y=5上,以CD為邊的“坐標(biāo)菱形”為正方形,求直線(xiàn)CD 表達(dá)式;

(3)⊙O的半徑為,點(diǎn)P的坐標(biāo)為(3,m) .若在O上存在一點(diǎn)Q,使得以QP為邊的“坐標(biāo)菱形”為正方形,求m的取值范圍

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在密碼學(xué)中,直接可以看到內(nèi)容為明碼,對(duì)明碼進(jìn)行某種處理后得到的內(nèi)容為密碼、有一種密碼,將英文26個(gè)字母a,bc…,z(不論大小寫(xiě))依次對(duì)應(yīng)1,2,3,…,2626個(gè)自然數(shù).當(dāng)明碼字母對(duì)應(yīng)的序號(hào)x為奇數(shù)時(shí),密碼字母對(duì)應(yīng)的序號(hào)是;當(dāng)明碼字母對(duì)應(yīng)的序號(hào)x為偶數(shù)時(shí),密碼字母對(duì)應(yīng)的序號(hào)是+14.按上述規(guī)定,將明碼“hope”譯成密碼是(  )

字母

a

b

c

d

e

f

g

h

i

j

k

l

m

序號(hào)

1

2

3

4

5

6

7

8

9

10

11

12

13

字母

n

o

p

q

r

s

t

u

v

w

x

y

z

序號(hào)

14

15

16

17

18

19

20

21

22

23

24

25

26

A.gawqB.rivdC.giheD.hope

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD中,對(duì)角線(xiàn)AC、BD相交于點(diǎn)O,AO=CO,BO=DO,且∠ABC+∠ADC=180°.

(1)求證:四邊形ABCD是矩形.

(2)若∠ADF:∠FDC=3:2,DF⊥AC,則∠BDF的度數(shù)是多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案