【題目】如圖,Rt△ABC中AB=3,BC=4,∠B=90°,點(diǎn)B、C在兩坐標(biāo)軸上滑動(dòng).當(dāng)邊AC⊥x軸時(shí),點(diǎn)A剛好在雙曲線(xiàn) 上,此時(shí)下列結(jié)論不正確的是( )

A.點(diǎn)B為(0,
B.AC邊的高為
C.雙曲線(xiàn)為
D.此時(shí)點(diǎn)A與點(diǎn)O距離最大

【答案】D
【解析】解:∵AB=3,BC=4,∠B=90°,
∴AC=5,
∵AC⊥x軸,
∴點(diǎn)A的縱坐標(biāo)是5,
設(shè)AC邊上的高是h,
∵SABC= ×3×4= ×5h,
∴h=
∴點(diǎn)A的坐標(biāo)是( ,5),
又∵點(diǎn)A在 上,
∴k=12,
∴反比例函數(shù)的解析式是y= ;
∵OC= ,BC=4,
∴OB= (負(fù)數(shù)舍去),
∴B點(diǎn)坐標(biāo)是(0, ).
綜上所述,可知ABC都是正確的,答案D不一定正確,利用排除法可知.
故選D.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形ABGD中,AB=AD=6,梯形ABCD中,DE⊥DC交AB于E,DF平分∠EDC交BC于F,連結(jié)EF.
(1)證明:EF=CF;
(2)當(dāng) 時(shí),求EF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】萬(wàn)安縣開(kāi)發(fā)區(qū)某電子電路板廠(chǎng)到井岡山大學(xué)從應(yīng)屆畢業(yè)生中招聘公司職員,對(duì)應(yīng)聘者的專(zhuān)業(yè)知識(shí)、英語(yǔ)水平、參加社會(huì)實(shí)踐與社團(tuán)活動(dòng)等三項(xiàng)進(jìn)行測(cè)試或成果認(rèn)定,三項(xiàng)的得分滿(mǎn)分都為100分,三項(xiàng)的分?jǐn)?shù)分別按5∶3∶2的比例記入每人的最后總分,有4位應(yīng)聘者的得分如下表所示.

項(xiàng)目

專(zhuān)業(yè)知識(shí)

英語(yǔ)水平

參加社會(huì)實(shí)踐與

社團(tuán)活動(dòng)等

85

85

90

85

85

70

80

90

70

90

90

50

(1)分別算出4位應(yīng)聘者的總分;

(2)表中四人“專(zhuān)業(yè)知識(shí)”的平均分為85分,方差為12.5,四人“英語(yǔ)水平”的平均分為87.5分,方差為6.25,請(qǐng)你求出四人“參加社會(huì)實(shí)踐與社團(tuán)活動(dòng)等”的平均分及方差;

(3)分析(1)和(2)中的有關(guān)數(shù)據(jù),你對(duì)大學(xué)生應(yīng)聘者有何建議?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四邊形ABCD中,E、F分別是CD、AB延長(zhǎng)線(xiàn)上的點(diǎn),連結(jié)EF,分別交AD、BC于點(diǎn)G、H.若∠1=∠2,∠A=∠C,試說(shuō)明AD//BCAB//CD.請(qǐng)完成下面的推理過(guò)程,填寫(xiě)理由或數(shù)學(xué)式:

∵∠1=2,1=AGH(_________)

∴∠2=AGH(________)

AD//BC(________)

∴∠ADE=C(________)

∵∠A=C(已知

∴∠ADE=_______(等量代換)

AB//CD(_______)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】2016年2月18日韓國(guó)海軍海警在朝鮮半島東部海域?qū)嵤┞?lián)合演習(xí),在返回濟(jì)州島軍事基地途中,韓國(guó)海軍UH﹣60直升機(jī)在距海平面垂直高度為300米的點(diǎn)C處測(cè)得濟(jì)州一小島的西端點(diǎn)A的俯角為60°,然后沿著平行于AB的方向水平飛行了3500米,在點(diǎn)D測(cè)得這小島的東端點(diǎn)B的俯角為45°,求這個(gè)濟(jì)州小島東西兩端BA的距離(結(jié)果精確到1米,參考數(shù)據(jù): ≈1.732, ≈1.414)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】數(shù)學(xué)課上,老師出了一道題:化簡(jiǎn)

[8(a+b)5-4(a+b)4+(-a-b)3]÷[2(a+b)3].

小明同學(xué)馬上舉手,下面是小明的解題過(guò)程:

[8(a+b)5-4(a+b)4+(-a-b)3]÷[2(a+b)3]

=[8(a+b)5-4(a+b)4+(a+b)3]÷8(a+b)3

=(a+b)2- (a+b)+ .

小亮也舉起了手,說(shuō)小明的解題過(guò)程不對(duì),并指了出來(lái).老師肯定了小亮的回答.你知道小明錯(cuò)在哪兒?jiǎn)?/span>?請(qǐng)指出來(lái),并寫(xiě)出正確解答.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC中,AB=AC=10,BC=12,點(diǎn)D在邊BC上,且BD=4,以點(diǎn)D為頂點(diǎn)作∠EDF=∠B,分別交邊AB于點(diǎn)E,交AC或延長(zhǎng)線(xiàn)于點(diǎn)F.
(1)當(dāng)AE=4時(shí),求AF的長(zhǎng);
(2)當(dāng)以邊AC為直徑的⊙O與線(xiàn)段DE相切時(shí),求BE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算:| ﹣2|+20100﹣(﹣ 1+3tan30°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線(xiàn)y= x+1與拋物線(xiàn)y=ax2+bx﹣3交于A,B兩點(diǎn),點(diǎn)A在x軸上,點(diǎn)B的縱坐標(biāo)為3.點(diǎn)P是直線(xiàn)AB下方的拋物線(xiàn)上一動(dòng)點(diǎn)(不與A,B重合),過(guò)點(diǎn)P作x軸的垂線(xiàn)交直線(xiàn)AB與點(diǎn)C,作PD⊥AB于點(diǎn)D

(1)①求拋物線(xiàn)的解析式;②求sin∠ACP的值
(2)設(shè)點(diǎn)P的橫坐標(biāo)為m
①用含m的代數(shù)式表示線(xiàn)段PD的長(zhǎng),并求出線(xiàn)段PD長(zhǎng)的最大值;
②連接PB,線(xiàn)段PC把△PDB分成兩個(gè)三角形,求出當(dāng)這兩個(gè)三角形面積之比為9:10時(shí)的m值;
③是否存在適合的m值,使△PCD與△PBD相似?若存在,直接寫(xiě)出m值;若不存在,說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案