【題目】某水果店在兩周內(nèi),將標價為10/斤的某種水果,經(jīng)過兩次降價后的價格為8.1/斤,并且兩次降價的百分率相同.

(1)求該種水果每次降價的百分率;

(2)從第一次降價的第1天算起,第x天(x為整數(shù))的售價、銷量及儲存和損耗費用的相關信息如表所示.已知該種水果的進價為4.1/斤,設銷售該水果第x(天)的利潤為y(元),求yx(1x15)之間的函數(shù)關系式,并求出第幾天時銷售利潤最大?

時間x(天)

1x9

9x15

x15

售價(元/斤)

1次降價后的價格

2次降價后的價格

銷量(斤)

80﹣3x

120﹣x

儲存和損耗費用(元)

40+3x

3x2﹣64x+400

(3)在(2)的條件下,若要使第15天的利潤比(2)中最大利潤最多少127.5元,則第15天在第14天的價格基礎上最多可降多少元?

【答案】(1)該種水果每次降價的百分率是10%;(2)yx(1x15)之間的函數(shù)關系式為:y=,第10天時銷售利潤最大;(3)15天在第14天的價格基礎上最多可降0.5元.

【解析】分析:(1)設這個百分率是x,根據(jù)某商品原價為10元,由于各種原因連續(xù)兩次降價,降價后的價格為8.1元,可列方程求解;
(2)根據(jù)兩個取值先計算:當時和時銷售單價,由利潤=(售價-進價)×銷量-費用列函數(shù)關系式,并根據(jù)增減性求最大值,作對比;
(3)設第15天在第14天的價格基礎上最多可降元,根據(jù)第15天的利潤比(2)中最大利潤最多少127.5元,列不等式可得結(jié)論.

詳解:(1)設該種水果每次降價的百分率是x,

x=10%x=190%(舍去),

答:該種水果每次降價的百分率是10%;

(2),1次降價后的價格:10×(110%)=9,

y=(94.1)(803x)(40+3x)=17.7x+352,

17.7<0,

yx的增大而減小,

∴當x=1時,y有最大值,

y=17.7×1+352=334.3(),

時,第2次降價后的價格:8.1元,

3<0,

∴當時,yx的增大而增大,

10<x<15時,yx的增大而減小,

∴當x=10時,y有最大值,

y=380(),

綜上所述,yx()之間的函數(shù)關系式為:

10天時銷售利潤最大;

(3)設第15天在第14天的價格基礎上最多可降a元,

由題意得:

答:第15天在第14天的價格基礎上最多可降0.5.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】有這樣一個問題:探究函數(shù)的圖象與性質(zhì).小東根據(jù)學習函數(shù)的經(jīng)驗,對函數(shù)的圖象與性質(zhì)進行了探究.

下面是小東的探究過程,請補充完整:

(1)函數(shù)的自變量x的取值范圍是 ;

(2)下表是yx的幾組對應值.

x

-3

-2

-1

1

2

3

4

5

y

3

m

m的值;

(3)如下圖,在平面直角坐標系xOy中,描出了以上表中各對對應值為坐標的點.根據(jù)描出的點,畫出該函數(shù)的圖象;

(4)結(jié)合函數(shù)的圖象,寫出該函數(shù)的一條性質(zhì): .

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列四幅圖象近似刻畫兩個變量之間的關系,請按圖象順序?qū)⑾旅嫠姆N情景與之對應排序(  ).

一輛汽車在公路上勻速行駛(汽車行駛的路程與時間的關系)

向錐形瓶中勻速注水(水面的高度與注水時間的關系)

將常溫下的溫度計插入一杯熱水中(溫度計的讀數(shù)與時間的關系)

一杯越來越?jīng)龅乃ㄋ疁嘏c時間的關系)

A.①②④③ B.③④②①

C.①④②③ D.③②④①

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,將正方形ABCD置于平面直角坐標系中,其中AD邊在x軸上,其余各邊均與坐標軸平行,直線lyx3沿x軸的負方向以每秒1個單位的速度平移,在平移的過程中,該直線被正方形ABCD的邊所截得的線段長為m,平移的時間為t(秒),mt的函數(shù)圖象如圖2所示,則圖2b的值為(

A. 5B. 4C. 3D. 2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知是等邊三角形,DBC邊上的一個動點D不與B,C重合是以AD為邊的等邊三角形,過點FBC的平行線交射線AC于點E,連接BF

如圖1,求證:;

請判斷圖1中四邊形BCEF的形狀,并說明理由;

D點在BC邊的延長線上,如圖2,其它條件不變,請問中結(jié)論還成立嗎?如果成立,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀下列材料,完成任務:

自相似圖形

定義:若某個圖形可分割為若干個都與它相似的圖形,則稱這個圖形是自相似圖形.例如:正方形ABCD中,點E、F、G、H分別是AB、BC、CD、DA邊的中點,連接EG,HF交于點O,易知分割成的四個四邊形AEOH、EBFO、OFCG、HOGD均為正方形,且與原正方形相似,故正方形是自相似圖形.

任務:

(1)圖1中正方形ABCD分割成的四個小正方形中,每個正方形與原正方形的相似比為   

(2)如圖2,已知ABC中,ACB=90°,AC=4,BC=3,小明發(fā)現(xiàn)ABC也是“自相似圖形”,他的思路是:過點C作CDAB于點D,則CD將ABC分割成2個與它自己相似的小直角三角形.已知△ACD∽△ABC,則ACD與ABC的相似比為   

(3)現(xiàn)有一個矩形ABCD是自相似圖形,其中長AD=a,寬AB=b(a>b).

請從下列A、B兩題中任選一條作答:我選擇   題.

A:①如圖3﹣1,若將矩形ABCD縱向分割成兩個全等矩形,且與原矩形都相似,則a=   (用含b的式子表示);

如圖3﹣2若將矩形ABCD縱向分割成n個全等矩形,且與原矩形都相似,則a=   (用含n,b的式子表示);

B:①如圖4﹣1,若將矩形ABCD先縱向分割出2個全等矩形,再將剩余的部分橫向分割成3個全等矩形,且分割得到的矩形與原矩形都相似,則a=   (用含b的式子表示);

如圖4﹣2,若將矩形ABCD先縱向分割出m個全等矩形,再將剩余的部分橫向分割成n個全等矩形,且分割得到的矩形與原矩形都相似,則a=   (用含m,n,b的式子表示).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,長方形中,長,寬,四邊形和四邊形都是正方形.

1)求四邊形的面積(用含、的代數(shù)式表示);

2)當滿足什么等量關系時,圖形是一個軸對稱圖形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知等邊△ABC的邊長為DAB上的動點,過DDEAC于點E,過EEFBC于點F,過FFGAB于點G.當GD重合時,AD的長是(  )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形ABCD中,點EF分別在邊ABCD上,點G、H在對角線AC上,AG=CH,BE=DF

1)求證:四邊形EGFH是平行四邊形;

2)若EG=EH,AB=8,BC=4.求AE的長.

查看答案和解析>>

同步練習冊答案