【題目】如圖,A,B兩地被池塘隔開,小明通過下列方法測出了A,B間的距離:先在AB外選一點C,然后測出AC,BC的中點M,N,并測量出MN的長為12 m,由此他就知道了A,B間的距離,有關他這次探究活動的描述錯誤的是( )
A. AB=24 m B. MN∥AB C. △CMN∽△CAB D. CM∶MA=1∶2
【答案】D
【解析】試題分析:根據(jù)三角形的中位線平行于第三邊并且等于第三邊的一半可得MN∥AB,MN=AB,再根據(jù)相似三角形的判定解答.
試題解析:∵M、N分別是AC,BC的中點
∴MN∥AB,MN=AB,
∴AB=2MN=2×12=24m
△CMN∽△CAB
∵M是AC的中點
∴CM=MA
∴CM:MA=1:1
故描述錯誤的是D選項.
故選D.
考點:1.三角形中位線定理;2.相似三角形的應用.
【題型】單選題
【結束】
10
【題目】若關于的一元二次方程+x-3m=0有兩個不相等的實數(shù)根,則的取值范圍是( )
A. B. C. D.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=ax2-5ax+4a與x軸相交于點A,B,且過點C(5,4).
(1)求a的值和該拋物線頂點P的坐標;
(2)請你設計一種平移的方法,使平移后拋物線的頂點落在第二象限,并寫出平移后拋物線的表達式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一次函數(shù)的圖象與反比例函數(shù)的圖象交于點P,點P在第一象限.PA⊥x軸于點A,PB⊥y軸于點B.一次函數(shù)的圖象分別交軸、軸于點C、D,且S△PBD=4, .
(1)求點D的坐標;
(2)求一次函數(shù)與反比例函數(shù)的解析式;
(3)根據(jù)圖象寫出當時,一次函數(shù)的值大于反比例函數(shù)的值的的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,直線AB交CD于點O,OE平分∠BOD,OF平分∠COB,∠AOD:∠BOE=4:1,則∠AOF等于( 。
A. 130°B. 120°C. 110°D. 100°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】若點P(x,y)的坐標滿足方程組
(1)求點P的坐標(用含m,n的式子表示);
(2)若點P在第四象限,且符合要求的整數(shù)m只有兩個,求n的取值范圍;
(3)若點P到x軸的距離為5,到y軸的距離為4,求m,n的值(直接寫出結果即可).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,AB∥CD,E是射線FD上的一點,∠ABC=140°,∠CDF=40°
(1)試說明BC∥EF;
(2)若∠BAE=110°,連接BD,如圖2.若BD∥AE,則BD是否平分∠ABC,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,BP平分∠ABC,D為BP上一點,E,F分別在BA,BC上,且滿足DE=DF,若∠BED=140°,則∠BFD的度數(shù)是( 。
A. 40°B. 50°C. 60°D. 70°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線表示三條相互交叉的公路,現(xiàn)要建一個貨物中轉站,要求它到三條公路的距離相等,則可供選擇的地址有( )
A.一處B.二處C.三處D.四處
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com