【題目】若點P(x,y)的坐標滿足方程組
(1)求點P的坐標(用含m,n的式子表示);
(2)若點P在第四象限,且符合要求的整數(shù)m只有兩個,求n的取值范圍;
(3)若點P到x軸的距離為5,到y軸的距離為4,求m,n的值(直接寫出結果即可).
科目:初中數(shù)學 來源: 題型:
【題目】已知:二次函數(shù)y=x2+bx+3的圖象經(jīng)過點(3,0).
(1)求b的值;
(2)求出該二次函數(shù)圖象的頂點坐標和對稱軸;
(3)在所給坐標系中畫出二次函數(shù)y=x2+bx+3的圖象.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在邊長為1的小正方形網(wǎng)格中,△AOB的頂點均在格點上.
(1)B點關于y軸的對稱點坐標為 ;
(2)將△AOB向左平移3個單位長度,再向上平移2個單位長度得到△A1O1B1,請畫出△A1O1B1;
(3)在(2)的條件下,△AOB邊AB上有一點P的坐標為(a,b),則平移后對應點P1的坐標為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,A,B兩地被池塘隔開,小明通過下列方法測出了A,B間的距離:先在AB外選一點C,然后測出AC,BC的中點M,N,并測量出MN的長為12 m,由此他就知道了A,B間的距離,有關他這次探究活動的描述錯誤的是( )
A. AB=24 m B. MN∥AB C. △CMN∽△CAB D. CM∶MA=1∶2
【答案】D
【解析】試題分析:根據(jù)三角形的中位線平行于第三邊并且等于第三邊的一半可得MN∥AB,MN=AB,再根據(jù)相似三角形的判定解答.
試題解析:∵M、N分別是AC,BC的中點
∴MN∥AB,MN=AB,
∴AB=2MN=2×12=24m
△CMN∽△CAB
∵M是AC的中點
∴CM=MA
∴CM:MA=1:1
故描述錯誤的是D選項.
故選D.
考點:1.三角形中位線定理;2.相似三角形的應用.
【題型】單選題
【結束】
10
【題目】若關于的一元二次方程+x-3m=0有兩個不相等的實數(shù)根,則的取值范圍是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知一次函數(shù)與反比例函數(shù)的圖像相交于點,與軸相交于點.
(1)填空:的值為 , 的值為 ;
(2)觀察反比函數(shù)的圖像,當時,請直接寫出自變量的取值范圍;
(3)以為邊作菱形,使點在軸負半軸上,點在第二象限內(nèi),求點的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知,如圖,∠BAE+∠AED=180°,∠1=∠2,那么∠M=∠N(下面是推理過程,請你填空).
解:∵∠BAE+∠AED=180°(已知)
∴ ∥ (同旁內(nèi)角互補,兩直線平行)
∴∠BAE= (兩直線平行,內(nèi)錯角相等)
又∵∠1=∠2
∴∠BAE﹣∠1= ﹣
即∠MAE=
∴ ∥ (內(nèi)錯角相等,兩直線平行)
∴∠M=∠N(兩直線平行,內(nèi)錯角相等)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+1(a≠0)的圖象的頂點在第一象限,且過點(-1,0).設t=a+b+1,則t值的變化范圍是( )
A. 0<t<1 B. 0<t<2 C. 1<t<2 D. -1<t<1
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com