【題目】如圖1,在平面直角坐標系中,直線AB分別交y軸、x軸于點A0,a),點Bb0),且a、b滿足a2-4a+4+0

1)求ab的值;

2)以AB為邊作RtABC,點C在直線AB的右側(cè),且∠ACB45°,求點C的坐標;

3)若(2)的點C在第四象限(如圖2),AC x軸交于點DBCy軸交于點E,連接 DE,過點CCFBCx軸于點F

①求證:CF=BC;

②直接寫出點CDE的距離.

【答案】1a2,b-1;(2)滿足條件的點C2,1)或(1,-1);(3)①證明見解析;②1

【解析】

1)可得(a2)2+0,由非負數(shù)的性質(zhì)可得出答案;
2)分兩種情況:∠BAC=90°或∠ABC=90°,根據(jù)等腰直角三角形的性質(zhì)及全等三角形的性質(zhì)可求出點C的坐標;
3)①如圖3,過點CCLy軸于點L,則CL=1=BO,根據(jù)AAS可證明BOE≌△CLE,得出BE=CE,根據(jù)ASA可證明ABE≌△BCF,得出BE=CF,則結(jié)論得證;
②如圖4,過點CCKED于點K,過點CCHDF于點H,根據(jù)SAS可證明CDE≌△CDF,可得∠BAE=CBF,由角平分線的性質(zhì)可得CK=CH=1

1)∵a24a+4+0,
(a2)2+0,
∵(a-22≥0,≥0,
a-2=02b+2=0,
a=2b=-1;
2)由(1)知a=2,b=-1,
A0,2),B-1,0),
OA=2,OB=1
∵△ABC是直角三角形,且∠ACB=45°,
∴只有∠BAC=90°或∠ABC=90°,
、當(dāng)∠BAC=90°時,如圖1

∵∠ACB=ABC=45°,
AB=CB
過點CCGOAG,
∴∠CAG+ACG=90°,
∵∠BAO+CAG=90°,
∴∠BAO=ACG
AOBBCP中,

∴△AOB≌△CGAAAS),
CG=OA=2,AG=OB=1
OG=OA-AG=1,
C21),
、當(dāng)∠ABC=90°時,如圖2

的方法得,C1,-1);
即:滿足條件的點C2,1)或(1,-1
3)①如圖3,由(2)知點C1-1),
過點CCLy軸于點L,則CL=1=BO,

BOECLE中,
,
∴△BOE≌△CLEAAS),
BE=CE,
∵∠ABC=90°,
∴∠BAO+BEA=90°,
∵∠BOE=90°,
∴∠CBF+BEA=90°,
∴∠BAE=CBF
ABE和△BCF中,

∴△ABE≌△BCFASA),
BE=CF
CFBC;
②點CDE的距離為1
如圖4,過點CCKED于點K,過點CCHDF于點H,

由①知BE=CF,
BE=BC,
CE=CF
∵∠ACB=45°,∠BCF=90°,
∴∠ECD=DCF
DC=DC,
∴△CDE≌△CDFSAS),
∴∠BAE=CBF,
CK=CH=1

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在△ACB和△AED中,AC=BC,AE=DE,∠ACB=∠AED=90°,點E在AB上,F(xiàn)是線段BD的中點,連接CE、FE.

(1)若AD=3,BE=4,求EF的長;

(2)求證:CE=EF;

(3)將圖1中的△AED繞點A順時針旋轉(zhuǎn),使AED的一邊AE恰好與△ACB的邊AC在同一條直線上(如圖2),連接BD,取BD的中點F,問(2)中的結(jié)論是否仍然成立,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB⊙O的直徑,PO⊥AB,PE⊙O的切線,交AB的延長線于點C,切點為E,AEPO于點F.

(1)求證:PEF是等腰三角形;

(2)在圖中,作EH⊥AB,垂足為H,作弦BD∥PC,交EH于點G.若EG=5,sinC=,求直徑AB的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,菱形ABCD中,AB=1,∠A=60°,EFGH是矩形,矩形的頂點都在菱形的邊上.設(shè)AE=AH=x0x1),矩形的面積為S

1)求S關(guān)于x的函數(shù)解析式;

2)當(dāng)EFGH是正方形時,求S的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】張康和李健兩名運動愛好者周末相約到丹江環(huán)庫綠道進行跑步鍛煉.

1)周日早上點,張康和李健同時從家出發(fā),分別騎自行車和步行到離家距離分別為千米和千米的綠道環(huán)庫路入口匯合,結(jié)果同時到達,且張康每分鐘比李健每分鐘多行米,求張康和李健的速度分別是多少米分?

2)兩人到達綠道后約定先跑千米再休息,李健的跑步速度是張康跑步速度的倍,兩人在同起點,同時出發(fā),結(jié)果李健先到目的地分鐘.

①當(dāng),時,求李健跑了多少分鐘?

②求張康的跑步速度多少米分?(直接用含,的式子表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線y=-x+2分別交x軸、y軸于點A,B,點DBA的延長線上,OD的垂直平分線交線段AB于點C.若OBCOAD的周長相等,則OD的長是( )

A. 2B. 2C. D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】春節(jié)前小王花1200元從農(nóng)貿(mào)市場購進批發(fā)價分別為每箱30元與50元的A,B兩種水果進行銷售,并分別以每箱35元與60元的價格出售,設(shè)購進A水果x箱,B水果y.

(1)讓小王將水果全部售出共賺了215元,則小王共購進A、B水果各多少箱?

(2)若要求購進A水果的數(shù)量不得少于B水果的數(shù)量,則應(yīng)該如何分配購進A, B水果的數(shù)量并全部售出才能獲得最大利潤,此時最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,已知正比例函數(shù)yx的圖象與反比例函數(shù)y的圖象交于Aa,-2),B兩點.

1)求反比例函數(shù)的表達式和點B的坐標;

2P是第一象限內(nèi)反比例函數(shù)圖象上一點,過點Py軸的平行線,交直線AB于點C,連接PO,若POC的面積為3,求點P的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】Ax1,y1)、Bx2,y2)都在某函數(shù)圖象上,且當(dāng)x1x2<0時,y1y2,則此函數(shù)一定不是( 。

A. B. y=﹣2x+1 C. yx2﹣1 D.

查看答案和解析>>

同步練習(xí)冊答案