如圖15-3-3所示,長方形ABCD被分成六個(gè)大小不一的正方形,已知中間一個(gè)小正方形面積為4,求長方形ABCD中最大正方形與最小正方形的面積之差.

答案:
解析:

思路分析:因?yàn)樾≌叫蔚拿娣e為4,所以它的邊長為2.顯然它是最小的正方形.其余正方形的邊長是b=a+2,c=b+2=a+4,d=c+2=a+6,可見邊長為d的正方形是最大的,因此可求得兩正方形面積差.

解:由題意,得b=a+2,c=b+2=a+4,d=c+2=a+6,

∵AB=DC,∴d+c=b+2a.

∴a+6+a+4=a+2+2a.∴a=8.

∴兩正方形的面積差為d2-4=(a+6)2-4=(8+6)2-4=192.


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

12、如圖所示,將一張長方形的紙對折,可得一條折痕(圖中虛線),繼續(xù)對折,對折時(shí)每次的折痕與上次的折痕保持平行,得到3條折痕,如圖(2)所示,連續(xù)對折三次后,可以得到7條折痕,那么對折四次可以得到15條折痕,如果對折n次,可以得到( 。l折痕.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖2,是一玻璃盛水容器,高度為45厘米,現(xiàn)容器中水面高度為15厘米,如圖(1)所示,現(xiàn)將容器口密封并倒置此容器后,如圖(2)所示,這時(shí)水面高度為25厘米,已知,此容器最多可盛水700毫升,那么此時(shí)容器中水的體積為
300
300
毫升.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

一個(gè)大長方形被分成8個(gè)小長方形,其中有5個(gè)小長方形的面積如圖中的數(shù)字所示,填上表中所缺的數(shù),則這個(gè)大長方形的面積為
93
1
3
93
1
3
10
5
5
15
10
3
10
3
18 9
27
27
6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖15-1,一等腰直角三角尺GEF的兩條直角邊與正方形ABCD的兩條邊分別重合在一起.現(xiàn)正方形ABCD保持不動(dòng),將三角尺GEF繞斜邊EF的中點(diǎn)O(點(diǎn)O也是BD中點(diǎn))按順時(shí)針方向旋轉(zhuǎn).

(1)如圖15-2,當(dāng)EFAB相交于點(diǎn)M,GFBD相交于點(diǎn)N時(shí),通過觀察或測量BM,FN的長度,猜想BMFN滿足的數(shù)量關(guān)系,并證明你的猜想;

(2)若三角尺GEF旋轉(zhuǎn)到如圖15-3所示的位置時(shí),線段FE的延長線與AB的延長線相交于點(diǎn)M,線段BD的延長線與GF的延長線相交于點(diǎn)N,此時(shí),(1)中的猜想還成立嗎?若成立,請證明;若不成立,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案