【題目】在邊長為6的正方形ABCD中,點E是射線BC上的動點(不與B,C重合),連結(jié)AE,將△ABE沿AE向右翻折得△AFE,連結(jié)CF和DF,若△DFC為等腰三角形,則BE的長為_____.
【答案】2或12+6或12﹣6
【解析】
分三種情形畫出圖形 分別求解即可.
如圖,①點F在以A為圓心AB為半徑的圓上,滿足條件的點F在線段CD的垂直平分線KF上.
作FH⊥AD于H.在Rt△AFH中,∵AF=2FH,
∴∠FAH=30°,
∵∠BAD=90°,
∴∠BAF=60°,
∴∠EAB=∠EAF=30°,
在Rt△ABE中,BE=ABtan30°=2,
②當DF′=DC時,在BE′上取一點G,使得AG=GE′.
∵AF′=AD=DF′,
∴△ADF′是等邊三角形,
∴∠DAF′=60°,
∴∠BAF′=150°,
∴∠BE′F′=30°,
∴∠BE′A=15°,
∵GA=GE′,
∴∠GAE′=∠GE′A=15°,
∴∠AGB=30°,
∴AG=GE′=2AB=12,BG=6,
∴BE′=12+6
若以點D為圓心,DC長為半徑作圓與以點A為圓心,AB長為半徑的圓在正方形的內(nèi)的交點為F
同理可得BE=12﹣6
綜上所述,BE的長為2或12+6或12﹣6
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,點F是邊BC的中點,連接AF并延長交DC的延長線于點E,連接AC、BE.
(1)求證:AB=CE;
(2)若,則四邊形ABEC是什么特殊四邊形?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如果關(guān)于的分式方程有負分數(shù)解,且關(guān)于的不等式組的解集為,那么符合條件的所有整數(shù)的積是( )
A. B. 0 C. 3 D. 9
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠ABD=∠ABC,補充一個條件,使得△ABD≌△ABC,則下列選項不符合題意的是( 。
A. ∠D=∠CB. ∠DAB=∠CABC. BD=BCD. AD=AC
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的邊長為,對角線AC和BD交于點E,點F是BC邊上一動點(不與點B,C重合),過點E作EF的垂線交CD于點G,連接FG交EC于點H.設(shè)BF=x,CH=y,則y與x的函數(shù)關(guān)系的圖象大致是( 。
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,∠AOB=70°,以點O為圓心,以適當長為半徑作弧分別交OA,OB于C,D兩點;分別以C,D為圓心,以大于CD的長為半徑作弧,兩弧相交于點P;以O為端點作射線OP,在射線OP上取點M,連接MC、MD.若測得∠CMD=40°,則∠MDB=_____
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了慶祝“五四”青年節(jié),我市某中學(xué)舉行了書法比賽,賽后隨機抽查部分參賽同學(xué)成績(滿分為100分),并制作成圖表如下
分數(shù)段 | 頻數(shù) | 頻率 |
60≤x<70 | 30 | 0.15 |
70≤x<80 | m | 0.45 |
80≤x<90 | 60 | n |
90≤x≤100 | 20 | 0.1 |
請根據(jù)以上圖表提供的信息,解答下列問題:
(1)這次隨機抽查了 名學(xué)生;表中的數(shù)m= ,n= ;
(2)請在圖中補全頻數(shù)分布直方圖;
(3)若繪制扇形統(tǒng)計圖,分數(shù)段60≤x<70所對應(yīng)扇形的圓心角的度數(shù)是 ;
(4)全校共有600名學(xué)生參加比賽,估計該校成績不低于80分的學(xué)生有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】解不等式組.請結(jié)合題意填空,完成本題的解答
(Ⅰ)解不等式①,得__________;
(Ⅱ)解不等式②,得__________;
(Ⅲ)把不等式①和②的解集在數(shù)軸上表示出來:
(Ⅳ)原不等式組的解集為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標系中,直線y=-x+2分別交x軸、y軸于點A、B,拋物線y=﹣x2+bx+c經(jīng)過點A、B.點P是x軸上一個動點,過點P作垂直于x軸的直線分別交拋物線和直線AB于點E和點F.設(shè)點P的橫坐標為m.
(1)點A的坐標為 .
(2)求這條拋物線所對應(yīng)的函數(shù)表達式.
(3)點P在線段OA上時,若以B、E、F為頂點的三角形與△FPA相似,求m的值.
(4)若E、F、P三個點中恰有一點是其它兩點所連線段的中點(三點重合除外),稱E、F、P三點為“共諧點”.直接寫出E、F、P三點成為“共諧點”時m的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com