【題目】如圖,已知二次函數(shù)的圖像與軸交于兩點,與軸交于,對稱軸為直線,頂點為

1)求該二次函數(shù)的解析式;

2)經(jīng)過兩點的直線交拋物線的對稱軸于點,點為直線上方拋物線上的一動點,當(dāng)點在什么位置時,的面積最大?并求此時點的坐標(biāo)及的最大面積;

3)如圖,平移拋物線,使拋物線的頂點在射線上移動,點平移后的對應(yīng)點為,點的對應(yīng)點為點,連接、,是否能為等腰三角形?若能,請求出所有符合條件的點的坐標(biāo);若不能,請說明理由.

【答案】1;(2;;(3)存在,,,

【解析】

1)由對稱性求得A點坐標(biāo), 再分別將點的坐標(biāo)代入二次函數(shù)的解析式,解方程組求出的值即可.

2)由B,C兩點得到直線BC的函數(shù)解析式,從而得到直線BC與對稱軸的交點,過點軸交,設(shè),則,用含m的式子分別表示出PQ,得到,,進(jìn)而轉(zhuǎn)化為二次函數(shù)的最值問題來解決即可.

(3)由題可得,,故可得的解析式為,設(shè)其中(),則由平移的規(guī)律得,又,根據(jù)平面上兩點間的距離公式分別表示出,,若能為等腰三角形,則分三種情況:①若,②若,若,分別建立方程求解即可.

1)解:由對稱性知點,

,,代入得

解得

∴二次函數(shù)解析式為

2

解:由題可得,

軸交

設(shè),則

即:

有最大值

當(dāng)時,

此時,

3)解:由題可得,,,

設(shè)其中(),

,

,

①若,則

②若,則

(舍)∴

③若,則

,

綜上所述,存在,,

使為等腰三角形

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在正方形ABCD中,點E是直線CD上一動點,以BE為斜邊向上方作等腰直角△BEF,連接AF,試求線段AFDE的數(shù)量關(guān)系.

1)小可同學(xué)進(jìn)行探索:將點E的位置特殊化,發(fā)現(xiàn)DE= ___ AF;

E運動過程中,∠BAF= ___ (填度數(shù))

2)如圖1,當(dāng)點E在線段CD上時,證明AFDE的數(shù)量關(guān)系;

3)如圖2,當(dāng)邊EF被對角線BD平分時,求值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,已知,軸,,點的坐標(biāo)為,點的坐標(biāo)為,點在第四象限.邊上的一個動點.

1)若點在邊上,,求點的坐標(biāo);

2)若點在邊上,點關(guān)于一條坐標(biāo)軸對稱的點落在直線上,求點的坐標(biāo);

3)若點在邊、上,點軸的交點,如圖2,過點軸的平行線,過點軸的平行線,它們相交于點,將沿直線翻折,當(dāng)點的對應(yīng)點落在坐標(biāo)軸上時,求點的坐標(biāo)(直接寫出答案).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知BCAC,圓心OAC上,點M與點C分別是AC與⊙O的交點,點DMB與⊙O的交點,點PAD延長線與BC的交點,且ADAOAMAP,連接OP

1)證明:MD//OP;

2)求證:PD是⊙O的切線;

3)若AD24,AMMC,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,的直徑,點的延長線上一點,直線于點,過點,垂足為于點,連接

1)求證:平分

2)求的長;

3上的一動點,于點,連接.是否存在點,使得?如果存在,請證明你的結(jié)論,并求的長;如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1 ,用籬笆靠墻圍成矩形花圃ABCD ,墻可利用的最大長度為15m,一面利用舊墻 ,其余三面用籬笆圍,籬笆總長為24m,設(shè)平行于墻的BC邊長為x m

1)若圍成的花圃面積為40m2時,求BC的長

2)如圖2,若計劃在花圃中間用一道籬笆隔成兩個小矩形,且圍成的花圃面積為50m2,請你判斷能否成功圍成花圃,如果能,求BC的長?如果不能,請說明理由.

3)如圖3,若計劃在花圃中間用n道籬笆隔成小矩形,且當(dāng)這些小矩形為正方形時,請列出xn滿足的關(guān)系式

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將二次函數(shù)y (x2)21的圖像沿y軸向上平移得到一條新的二次函數(shù)圖像,其中A(1m),B(4,n)平移后對應(yīng)點分別是A′、B′,若曲線AB所掃過的面積為12(圖中陰影部分),則新的二次函數(shù)對應(yīng)的函數(shù)表達(dá)是__________________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有甲、乙兩個不透明的布袋,甲袋中有兩個完全相同的小球,分別標(biāo)有數(shù)字﹣13;乙袋中有三個完全相同的小球,分別標(biāo)有數(shù)字1、0和﹣3.小麗先從甲袋中隨機(jī)取出一個小球,記錄下小球上的數(shù)字為x;再從乙袋中隨機(jī)取出一個小球,記錄下小球上的數(shù)字為y,設(shè)點A的坐標(biāo)為(xy).

1)請用表格或樹狀圖列出點A所有可能的坐標(biāo);

2)求點A在反比例函數(shù)y圖象上的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義:點PABC內(nèi)部或邊上的點(頂點除外),在PAB,PBCPCA中,若至少有一個三角形與ABC相似,則稱點PABC的自相似點.

例如:圖1,PABC的內(nèi)部,PBC=A,PCB=ABC,BCP∽△ABC,故PABC的自相似點.

請你運用所學(xué)知識,結(jié)合上述材料,解決下列問題:

在平面直角坐標(biāo)系中,M曲線C上的任意一點,點Nx軸正半軸上的任意一點.

(1) 如圖2,點P是OM上一點,ONP=M, 試說明點P是MON的自相似點; 當(dāng)M的坐標(biāo)是,N的坐標(biāo)是時,求點P 的坐標(biāo);

(2) 如圖3,當(dāng)M的坐標(biāo)是N的坐標(biāo)是時,求MON的自相似點的坐標(biāo);

(3) 是否存在點M和點N,使MON無自相似點,?若存在,請直接寫出這兩點的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案