【題目】定義:點PABC內部或邊上的點(頂點除外),在PABPBC,PCA中,若至少有一個三角形與ABC相似,則稱點PABC的自相似點.

例如:圖1,PABC的內部,PBC=A,PCB=ABC,BCP∽△ABC,故PABC的自相似點.

請你運用所學知識,結合上述材料,解決下列問題:

在平面直角坐標系中,M曲線C上的任意一點,點Nx軸正半軸上的任意一點.

(1) 如圖2,點P是OM上一點,ONP=M, 試說明點P是MON的自相似點; M的坐標是,N的坐標是時,求點P 的坐標;

(2) 如圖3,當M的坐標是,N的坐標是時,求MON的自相似點的坐標;

(3) 是否存在點M和點N,使MON無自相似點,?若存在,請直接寫出這兩點的坐標;若不存在,請說明理由.

【答案】(1);(2);(3)存在,

【解析】

試題分析:(1)易證點P是三角形MON的自相似點,過點P作PDx軸于D點根據(jù)M、N坐標易知MNO=90°,再利用三角函數(shù)可求出P點坐標;(2)根據(jù)坐標發(fā)現(xiàn)ON=MN=2,要找自相似點只能在ONM中做ONP=OMN或MNP=MON,分別畫出圖形,根據(jù)圖形性質,結合相似可求出自相似點的坐標;(3)根據(jù)前兩問可發(fā)現(xiàn),要想有自相似點,其實質就是在大角里面做小角,當三個角都相等時,即OMN為等邊三角形時,不存在自相似點,因此可得到直線OM的解析式y(tǒng)=x,與的交點就是M,從而可以求得N的坐標.

試題解析:(1)在ONPOMN中,

ONP=OMN,NOP=MON

ONPOMN

PM0N自相似點.

過點P作PDx軸于D點.

.

,

, .

在RtOPN中,.

.

. .

(2)如圖2,過點MMHx軸于H點,

,

,直線OM的表達式為

M0N自相似點,∴△∽△NOM

過點x軸于Q點,

的橫坐標為1,

如圖3,∽△NOM

的縱坐標為,

,

綜上所述,

(3)存在,

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知二次函數(shù)的圖像與軸交于兩點,與軸交于,對稱軸為直線,頂點為

1)求該二次函數(shù)的解析式;

2)經(jīng)過、兩點的直線交拋物線的對稱軸于點,點為直線上方拋物線上的一動點,當點在什么位置時,的面積最大?并求此時點的坐標及的最大面積;

3)如圖,平移拋物線,使拋物線的頂點在射線上移動,點平移后的對應點為,點的對應點為點,連接,是否能為等腰三角形?若能,請求出所有符合條件的點的坐標;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AEF中,∠EAF=45°AGEF于點G,現(xiàn)將AEG沿AE折疊得到AEB,將AFG沿AF折疊得到AFD,延長BEDF相交于點C

1)試判斷四邊形ABCD的形狀,并給出證明;

2)連接BD分別交AE、AF于點M、N,將ABM繞點A逆時針旋轉,使ABAD重合,得到ADH,試判斷線段MN、NDDH之間的數(shù)量關系,并說明理由.

3)若EG=2,GF=3,BM=2,求AG、MN的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中(如圖),已知拋物線經(jīng)過點,與軸交于點,,拋物線的頂點為點,對稱軸與軸交于點.

1)求拋物線的表達式及點的坐標;

2)點軸正半軸上的一點,如果,求點的坐標;

3)在(2)的條件下,點是位于軸左側拋物線上的一點,如果是以為直角邊的直角三角形,求點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,菱形ABCD中,對角線AC、BD交于O點,DE∥AC,CE∥BD

1)求證:四邊形OCED為矩形;

2)在BC上截取CFCO,連接OF,若AC16,BD12,求四邊形OFCD的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校組織數(shù)學興趣探究活動,愛思考的小實同學在探究兩條直線的位置關系查閱資料時發(fā)現(xiàn),兩條中線互相垂直的三角形稱為中垂三角形.如圖1、圖2、圖3中,、的中線,于點,像這樣的三角形均稱為中垂三角形

(特例探究)

1)如圖1,當,時,_____,______;

如圖2,當,時,_____,______;

(歸納證明)

2)請你觀察(1)中的計算結果,猜想、三者之間的關系,用等式表示出來,并利用圖3證明你的結論;

(拓展證明)

3)如圖4,在中,,,、分別是邊、的中點,連結并延長至,使得,連結,當于點時,求的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】對于拋物線yx22mx+m2+m2,當﹣1≤x≤2時,函數(shù)的最小值為m,則m的值為(

A.B.

C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,從點A看一山坡上的電線桿PQ,觀測點P的仰角是45°,向前走6m到達B點,測得頂端點P和桿底端點Q的仰角分別是60°30°,則該電線桿PQ的高度( 。

A. 6+2 B. 6+ C. 10 D. 8+

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtACB中,∠C=90°AC=3,BC=4,OBC的中點,到點O的距離等于BC的所有點組成的圖形記為G,圖形GAB交于點D

1)補全圖形并求線段AD的長;

2)點E是線段AC上的一點,當點E在什么位置時,直線ED 圖形G有且只有一個交點?請說明理由.

查看答案和解析>>

同步練習冊答案