【題目】如圖,在邊長為的正方形網(wǎng)格中建立平面直角坐標(biāo)系,已知三個(gè)頂點(diǎn)分別為,.

(1)以原點(diǎn)為位似中心,在軸的上方畫出,使位似,且相似比為;

(2)的面積是__________平方單位;

(3)點(diǎn)內(nèi)一點(diǎn),則在內(nèi)的對(duì)應(yīng)點(diǎn)的坐標(biāo)為________.

【答案】(1)見解析;(2)(3)

【解析】

(1)連接OB,延長OB到B1使得OB1=2OB,同法作出A1,C1,連接A1C1, B1C1, A1B1即可.
(2)兩條分割法求出三角形的面積即可.
(3)利用相似三角形的性質(zhì)解決問題即可.

解:(1)△A1B1C1即為所求.
(2))△A1B1C1的面積=4S△ABC=4(4×512×3×512×1×312×2×4)=28,
故答案為28.
(3)點(diǎn)P(a,b)為△ABC內(nèi)一點(diǎn),則在△A1B1C1內(nèi)的對(duì)應(yīng)點(diǎn)P′的坐標(biāo)為 (2a,2b),
故答案為 (2a,2b).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,AB=AC,點(diǎn)D為直線BC上一動(dòng)點(diǎn)(點(diǎn)D不與B、C重合)以AD為邊作正方形ADEF,使∠DAF=∠BAC,連接CF

(1)如圖1,當(dāng)點(diǎn)D在線段BC上時(shí),求證:BD=CF;

(2)如圖2,當(dāng)點(diǎn)D在線段BC的延長線上,且∠BAC=90°時(shí).

①問(1)中的結(jié)論是否仍然成立?若成立,請(qǐng)給出證明;若不成立,請(qǐng)說明理由;

②延長BACF于點(diǎn)G,連接GE,若AB=2,CD=BC,請(qǐng)求出GE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】問題:在1nn ≥2)這n個(gè)自然數(shù)中,每次取兩個(gè)數(shù)(不分順序),使得所取兩數(shù)之和大于n,共有多少種取法?

探究:不妨設(shè)有m種取法,為了探究mn的關(guān)系,我們先從簡單情形入手,再逐次遞進(jìn),最后猜想得出結(jié)論.

探究一:在122個(gè)自然數(shù)中,每次取兩個(gè)不同的數(shù)(不分順序),使得所取的兩個(gè)數(shù)之和大于2,有多少種取法?

根據(jù)題意,有下列取法:1+2,共1種取法.

所以,當(dāng)n=2時(shí),m=1.

探究二:在133個(gè)自然數(shù)中,每次取兩個(gè)不同的數(shù)(不分順序),使得所取的兩個(gè)數(shù)之和大于3,有多少種取法?

根據(jù)題意,有下列取法:1+3,2+3,共2種取法.

所以,當(dāng)n=3時(shí),m=2.

探究三:在144個(gè)自然數(shù)中,每次取兩個(gè)不同的數(shù)(不分順序),使得所取的兩個(gè)數(shù)之和大于4,有多少種取法?

根據(jù)題意,有下列取法:1+4,2+4,3+42+3,共有3+1=4種取法.

所以,當(dāng)n=4時(shí),m=3+1=4.

探究四:在155個(gè)自然數(shù)中,每次取兩個(gè)不同的數(shù)(不分順序),使得所取的兩個(gè)數(shù)之和大于5,有多少種取法?

根據(jù)題意,有下列取法:1+5, 2+5, 3+5, 4+5,2+4,3+4,共有4+2=6種不同的取法.

所以,當(dāng)n=5時(shí),m=4+2=6.

探究五:在166個(gè)自然數(shù)中,每次取兩個(gè)不同的數(shù)(不分順序),使得所取的兩個(gè)數(shù)之和大于6,有多少種不同的取法?(仿照上述探究方法,寫出解答過程)

探究六:在177個(gè)自然數(shù)中,每次取兩個(gè)不同的數(shù),使得所取的兩個(gè)數(shù)之和大于7,共有 種取法?(直接寫出結(jié)果)

不妨繼續(xù)探究n=8,9,···時(shí),mn的關(guān)系.

結(jié)論:在1nn個(gè)自然數(shù)中,每次取兩個(gè)數(shù),使得所取的兩個(gè)數(shù)字之和大于n,當(dāng)n為偶數(shù)時(shí),共有___種取法;當(dāng)n為奇數(shù)時(shí),共有___種取法;(只填最簡算式)

應(yīng)用:(1)各邊長都是自然數(shù),最大邊長為11的不等邊三角形共有 個(gè)

2)各邊長都是自然數(shù),最大邊長為12的三角形共有 個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),為常數(shù))的圖象經(jīng)過點(diǎn).

1)求滿足的關(guān)系式;

2)設(shè)該函數(shù)圖象的頂點(diǎn)坐標(biāo)是,當(dāng)的值變化時(shí),求關(guān)于的函數(shù)解析式;

3)若該函數(shù)的圖象不經(jīng)過第三象限,當(dāng)時(shí),函數(shù)的最大值與最小值之差為16,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小李的活魚批發(fā)店以 44 /公斤的價(jià)格從港口買進(jìn)一批 2000 公斤的某品種活魚,在運(yùn)輸過程中,有部分魚未能存活,小李對(duì)運(yùn)到的魚進(jìn)行隨機(jī)抽查,結(jié)果如表一.由于 市場調(diào)節(jié),該品種活魚的售價(jià)與日銷售量之間有一定的變化規(guī)律,表二是近一段時(shí)間該批發(fā)店的銷售記錄.

表一

所抽查的魚的總重量 m(公斤)

100

150

200

250

350

450

500

存活的魚的重量與 m 的比值

0.885

0.876

0.874

0.878

0.871

0.880

0.880

表二

該品種活魚的售價(jià)(/公斤)

50

51

52

53

54

該品神活魚的日銷售量(公斤)

400

360

320

280

240

(1)請(qǐng)估計(jì)運(yùn)到的 2000 公斤魚中活魚的總重量;(直接寫出答案)

(2)按此市場調(diào)節(jié)的觀律,

①若該品種活魚的售價(jià)定為 52.5 /公斤,請(qǐng)估計(jì)日銷售量,并說明理由;

②考慮到該批發(fā)店的儲(chǔ)存條,小李打算 8 天內(nèi)賣完這批魚(只賣活魚),且售價(jià)保持 不變,求該批發(fā)店每日賣魚可能達(dá)到的最大利潤,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)yax2+bx+ca,b,c是常數(shù),且a≠0)的圖象如圖所示,圖象與x軸交點(diǎn)都在點(diǎn)(﹣3,0)的右邊,下列結(jié)論:①b24ac,②abc0,③2a+bc0,④a+b+c0,其中正確的是( 。

A.①②B.①②④C.②③D.①②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)Cy軸正半軸上的一個(gè)動(dòng)點(diǎn),拋物線yax25ax+4aa是常數(shù),且a0)過點(diǎn)C,與x軸交于點(diǎn)AB,點(diǎn)A在點(diǎn)B的左邊.連接AC,以AC為邊作等邊三角形ACD,點(diǎn)D與點(diǎn)O在直線AC兩側(cè).

1)求點(diǎn)A,B的坐標(biāo);

2)當(dāng)CDx軸時(shí),求拋物線的函數(shù)表達(dá)式;

3)連接BD,當(dāng)BD最短時(shí),請(qǐng)直接寫出拋物線的函數(shù)表達(dá)式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】隨著人們生活質(zhì)量的提高,凈水器已經(jīng)慢慢走入了普通百姓家庭,某電器公司銷售每臺(tái)進(jìn)價(jià)分別為 2000 元,1700 元的A,B兩種型號(hào)的凈水器,下表是近兩周的銷售情況:

1)求A,B兩種型號(hào)的凈水器的銷售單價(jià);

2)若電器公司準(zhǔn)備用不多于 54000 元的金額采購這兩種型號(hào)的凈水器共 30 臺(tái),求 A種型號(hào)的凈水器最多能采購多少臺(tái)?

3)在(2)的條件下,公司銷售完這 30 臺(tái)凈水器能否實(shí)現(xiàn)利潤超過12800 元的目標(biāo)?若能,請(qǐng)給出相應(yīng)的采購方案;若不能,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖顯示了用計(jì)算機(jī)模擬隨機(jī)投擲一枚圖釘?shù)哪炒螌?shí)驗(yàn)的結(jié)果.

下面有三個(gè)推斷:

①當(dāng)投擲次數(shù)是500時(shí),計(jì)算機(jī)記錄釘尖向上的次數(shù)是308,所以釘尖向上的概率是0.616;

②隨著實(shí)驗(yàn)次數(shù)的增加,釘尖向上的頻率總在0.618附近擺動(dòng),顯示出一定的穩(wěn)定性,可以估計(jì)釘尖向上的概率是0.618;

③若再次用計(jì)算機(jī)模擬實(shí)驗(yàn),則當(dāng)投擲次數(shù)為1000時(shí),釘尖向上的概率一定是0.620.

其中合理的是(

A. B. C. ①② D. ①③

查看答案和解析>>

同步練習(xí)冊(cè)答案