如圖,已知直線與直線相交于點分別交兩點.矩形的頂點分別在直線上,頂點都在軸上,且點與點重合.

(1)求的面積;
(2)求矩形的邊的長;
(3)若矩形從原點出發(fā),沿軸的反方向以每秒1個單位長度的速度平移,設(shè)移動時間為t(0≤t<3)秒,矩形重疊部分的面積為,求關(guān)于的函數(shù)關(guān)系式.

(1)36;(2)4,8;(3)

解析試題分析:(1)先分別求得兩條直線與x軸的交點坐標,再求得兩條直線的交點坐標,最后根據(jù)三角形的面積公式求解即可;
點坐標為  
(2)根據(jù)矩形的性質(zhì)即可求的點的坐標,再根據(jù)點上即可求得點的坐標,即得結(jié)果;
(3)當時,如圖,矩形重疊部分為五邊形時,為四邊形).過,證得再根據(jù)相似三角形的性質(zhì)及三角形的面積公式求解即可.
(1)由點坐標為
點坐標為  

解得
點的坐標為

(2)∵點上且
點坐標為
又∵點上且
點坐標為

(3)當時,如圖,矩形重疊部分為五邊形時,為四邊形).過,





           
考點:函數(shù)的綜合題
點評:此類問題是初中數(shù)學(xué)的重點和難點,在中考中極為常見,一般以壓軸題形式出現(xiàn),難度較大.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,已知直線a的解析式為y=3x+6,直線a與x軸.y軸分別相交于A.B兩點,直線b經(jīng)過B.C兩點,點C的坐標為(8,0).直線a沿x軸正方向平移m個單位(0<m<10)得到直線a′,直線a′與x軸.直線b分別相交于點M.N.
(1)求sin∠BCA的值;
(2)當△MCN的面積為數(shù)學(xué)公式時,求直線a′的函數(shù)解析式;
(3)將△MCN沿直線a′對折得到△MC′N,把△MC′N與四邊形AMNB的重疊部分面積記為S,求S關(guān)于m的函數(shù)解析式,并求當S最大時四邊形MCNC′的周長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知直線與直線相交于點分別交兩點.矩形的頂點分別在直線上,頂點都在軸上,且點與點重合.

(1)求的面積;

(2)求矩形的邊的長;

(3)若矩形從原點出發(fā),沿軸的反方向以每秒1個單位長度的速度平移,設(shè)移動時間為t(0≤t<3)秒,矩形重疊部分的面積為,求關(guān)于的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011年4月浙江省某區(qū)中考數(shù)學(xué)二模試卷(解析版) 題型:解答題

如圖,已知直線a的解析式為y=3x+6,直線a與x軸.y軸分別相交于A.B兩點,直線b經(jīng)過B.C兩點,點C的坐標為(8,0).直線a沿x軸正方向平移m個單位(0<m<10)得到直線a′,直線a′與x軸.直線b分別相交于點M.N.
(1)求sin∠BCA的值;
(2)當△MCN的面積為時,求直線a′的函數(shù)解析式;
(3)將△MCN沿直線a′對折得到△MC′N,把△MC′N與四邊形AMNB的重疊部分面積記為S,求S關(guān)于m的函數(shù)解析式,并求當S最大時四邊形MCNC′的周長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012-2013學(xué)年廣東省珠海市香洲區(qū)中考二模數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,已知直線與直線相交于點分別交兩點.矩形的頂點分別在直線上,頂點都在軸上,且點與點重合.

(1)求的面積;

(2)求矩形的邊的長;

(3)若矩形從原點出發(fā),沿軸的反方向以每秒1個單位長度的速度平移,設(shè)移動時間為t(0≤t<3)秒,矩形重疊部分的面積為,求關(guān)于的函數(shù)關(guān)系式.

 

查看答案和解析>>

同步練習(xí)冊答案