【題目】如圖所示,的角平分線,,垂足為,的面積分別為49,40,則的面積為(

A.3.5B.4.5C.9D.10

【答案】B

【解析】

根據(jù)題意作DM=DEACM,作DNAC,構(gòu)造全等三角形利用全等三角形的判定及性質(zhì)以及角平分線的性質(zhì)進行分析求解.

解:作DM=DEACM,作DNAC

AD是△ABC的角平分線,DFAB

DF=DN,

RtDEFRtDMN中,

RtDEFRtDMNHL),

DE=DG,DM=DE

DM=DG,

DNAC

RtDGNRtDMN中,

RtDGNRtDMNHL),

RtDFARtDNA中,

RtDFARtDNAHL),

RtAEDRtAMD,

∵△ADG和△AED的面積分別為4940,

SMDG=SADG-SADM=49-40=9,

SDNM=SDEF=SMDG=×9=4.5

故選:B.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB是⊙O的直徑,弦CDAB于點P,AP=2,BP=6,APC=30°,則CD的長為_______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】ABC在直角坐標系中的位置如圖,其中A點的坐標是(﹣2,3

1)△ABC繞點O順時針旋轉(zhuǎn)90°得到△A1B1C1,請作出△A1B1C1,并寫出A點的對應(yīng)點A1的坐標;

2)若△ABC經(jīng)過平移后A點的對應(yīng)點A2的坐標是(2,﹣1),請作△A2B2C2,并計算平移的距離.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:,,,垂足分別為,,

1)如圖1,①線段的數(shù)量關(guān)系是__________;

②請寫出線段,之間的數(shù)量關(guān)系并證明.

2)如圖2,若已知條件不變,上述結(jié)論②還成立嗎?如果不成立,請直接寫出線段,之間的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在規(guī)格為8×8的邊長為1個單位的正方形網(wǎng)格中(每個小正方形的邊長為1),△ABC的三個頂點都在格點上,且直線m、n互相垂直.

(1)畫出△ABC關(guān)于直線n的對稱圖形△A′B′C′;

(2)直線m上存在一點P,使△APB的周長最;

在直線m上作出該點P;(保留畫圖痕跡)

②△APB的周長的最小值為   .(直接寫出結(jié)果)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖(1),在中,,,點是斜邊的中點,點,分別在線段,上,

1)求證:為等腰直角三角形;

2)若的面積為7,求四邊形的面積;

3)如圖(2),如果點運動到的延長線上時,點在射線上且保持,還是等腰直角三角形嗎.請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtABC中,AB=3BC=4,AC=5,在直線BC上有P點,使PAC是以AC為腰的等腰三角形,則BP的長為____________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在中,邊上的中點.

(1),連接.判斷的形狀,并證明;

(2)分別是上的中線,連接.判斷的形狀,并說明理由;

(3)分別是的平分線,連接.判斷的關(guān)系,不需證明;

(4)若分別在上任取一點,且,連接.在不添加輔助線的情況下,你還能得到哪些不同于上面的正確結(jié)論?請寫出至少四條,不需證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,RtABC中,∠ABC=90°,以AB為直徑作⊙O,點D為⊙O上一點,且CD=CB、連接DO并延長交CB的延長線于點E.

(1)判斷直線CD與⊙O的位置關(guān)系,并說明理由;

(2)若BE=4,DE=8,求AC的長.

查看答案和解析>>

同步練習冊答案