【題目】如圖,已知RtABC中,∠ACB90°,CD是斜邊AB上的中線,過點AAECDAE分別與CD、CB相交于點H、EAH2CH

1)求sinCAH的值;

2)如果CD,求BE的值.

【答案】1;(23

【解析】

1)由勾股定理得出ACCH,由銳角三角函數(shù)定義即可得出答案;

2)根據(jù)sinB的值,可得出ACAB1 ,由AB2 ,得AC2,設CExx0),則AE x,由勾股定理得出方程,求出CE1,從而得出BE

解:(1)∵AECD,

∴∠AHC90°,

AH2CH,

∴由勾股定理得:AC CH,

sinCAH;

2)∵∠ACB90°,CD是斜邊AB上的中線,

AB2CD2 ,

∴∠B=∠BCD,

AECD,

∴∠CAH+ACH90°,

又∵∠ACB90°,

∴∠BCD+ACH90°,

∴∠B=∠BCD=∠CAH

sinBsinCAH,

ACAB1

AC2

CExx0),則AE x,

RtACE中,由勾股定理得:x2+22=( x2

解得:x1

CE1,

RtABC中,由勾股定理得:BC4,

BEBCCE3

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】某居民小區(qū)一處圓柱形的輸水管道破裂,維修人員為更換管道,需確定管道圓形截面的半徑,如圖是水平放置的破裂管道有水部分的截面.

1)請你用直尺和圓規(guī)補全這個輸水管道的圓形截面(保留作圖痕跡);

2)若這個輸水管道有水部分的水面寬AB24cm,水面最深地方的高度為8cm,求這個圓形截面的半徑.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】對于二次函數(shù)y=﹣x2+x4,下列說法正確的是( 。

A.圖象的開口方向向上

B.當x>0 時,yx的增大而增大

C.x2時,y有最大值﹣3

D.圖象與x軸有兩個交點

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,如圖,二次函數(shù))圖象的頂點為,與軸交于兩點(點右側(cè)),點,關于直線對稱.

1坐標為 ;坐標為: ;坐標為 ;

2)求二次函數(shù)解析式;

3)在直線上是否存在一點,使得最大?若不存在,請說明理由:若存在,請求出此時的面積;

4)過點作直線交直線點,,分別為直線和直線上的兩個動點,連接、,求和的最小值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=x2+bx+c經(jīng)過點A(﹣1,0),B3,0).請解答下列問題:

1)求拋物線的解析式;

2)點E2,m)在拋物線上,拋物線的對稱軸與x軸交于點H,點FAE中點,連接FH,求線段FH的長.

注:拋物線y=ax2+bx+ca≠0)的對稱軸是x=

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知拋物線上部分點的橫坐標x與縱坐標y的對應值如下表

x

-2

-1

0

1

2

3

y

-4

0

2

2

0

-4

下列結(jié)論:①拋物線開口向下;②當時,yx的增大而減。虎蹝佄锞的對稱軸是直線;④函數(shù)的最大值為2.其中所有正確的結(jié)論為(

A.①②③B.①③C.①③④D.①②③④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了在校運會中取得更好的成績,小丁積極訓練.在某次試投中鉛球所經(jīng)過的路線是如圖所示的拋物線的一部分.已知鉛球出手處A距離地面的高度是米,當鉛球運行的水平距離為3米時,達到最大高度B.小丁此次投擲的成績是多少米?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在直角三角形中,除直角外的5個元素中,已知2個元素(其中至少有1個是邊),就可以求出其余的3個未知元素.對于任意三角形,我們需要知道幾個元素就可以求出其余的未知元素呢?思考并解答下列問題:

1)觀察圖①~圖④,根據(jù)圖中三角形的已知元素,可以求出其余未知元素的序號是____.

2)如圖⑤,在中,已知,,能否求出BC的長度?如果能,請求出BC的長度;如果不能,請說明理由.(參考數(shù)據(jù):,

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】商場銷售一批名牌襯衫,平均每天可售出40件,每件盈利40元,為了擴大銷售,增加盈利,盡快減少庫存,商場決定采取適當?shù)慕祪r措施,經(jīng)調(diào)查發(fā)現(xiàn),如果每件襯衫每降價1元,商場平均每天可多售出4件.

1)若商場平均每天要盈利2400元,每件襯衫應降價多少元?

2)若該商場要每天盈利最大,每件襯衫應降價多少元?盈利最大是多少元?

查看答案和解析>>

同步練習冊答案