【題目】如圖所示,矩形中,,點(diǎn)分別是邊的中點(diǎn),的圓心是點(diǎn)相交于點(diǎn)于點(diǎn),則圖中陰影部分的面積為__________

【答案】

【解析】

連接OG,根據(jù)矩形的性質(zhì)、中點(diǎn)的定義、中位線的性質(zhì)可得OE⊥DC、OE⊥ABAO=2、EC=2、EF=1、OF=1然后求得SEFC;然后再根據(jù)含30°的直角三角形的性質(zhì)和勾股定理求得FG=、∠FOG=60°,運(yùn)用扇形的面積公式可求S扇形OGE;然后根據(jù)S陰影FEG= S扇形OGE –SFOG求得S陰影FEG的面積,最后根據(jù)S陰影= S陰影FEG+ SEFC計(jì)算即可.

解:連接OG,

矩形中,

∴AB//CDAB=CD=4,AD//BC,AD=BC=2

點(diǎn)分別是邊的中點(diǎn)

∴OE⊥DC,OE⊥AB,OE//AD,AO=OB=AB=2,EC=DE=CD=2,

∴EF//DA

∴EF=AD=1,

∴OF=OE-EF=1

∴SEFC==1

Rt△OFG中,OG=OA=2,OF=1

∴∠OGF=30°,FG=

∴∠FOG=60°

∴S陰影FEG= S扇形OGE –SFOG=

∴S陰影= S陰影FEG+ SEFC=

故答案為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】9分)在一個(gè)不透明的盒子里,裝有四個(gè)分別標(biāo)有數(shù)字1,2,3,4的小球,他們的形狀、大小、質(zhì)地等完全相同.小蘭先從盒子里隨機(jī)取出一個(gè)小球,記下數(shù)字為x,放回盒子,搖勻后,再由小田隨機(jī)取出一個(gè)小球,記下數(shù)字為y

1)用列表法或畫樹狀圖法表示出(x,y)的所有可能出現(xiàn)的結(jié)果;

2)求小蘭、小田各取一次小球所確定的點(diǎn)(xy)落在反比例函數(shù)的圖象上的頻率;

3)求小蘭、小田各取一次小球所確定的數(shù)x,y滿足的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,D是⊙O上一點(diǎn),點(diǎn)E時(shí)的中點(diǎn),過點(diǎn)A作⊙O的切線交BD的延長(zhǎng)線于點(diǎn)F.連接AE并延長(zhǎng)交BF于點(diǎn)C

1)求證:ABBC;

2)如果AB10tanFAC,求FC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,過點(diǎn)C(3,4)的直線軸于點(diǎn)A,∠ABC=90°,AB=CB,曲線過點(diǎn)B,將點(diǎn)A沿軸正方向平移個(gè)單位長(zhǎng)度恰好落在該曲線上,則的值為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】隨著網(wǎng)絡(luò)資源日趨豐富,更多人選擇在線自主學(xué)習(xí),在線學(xué)習(xí)方式有在線閱讀、在線聽課、在線答題、在線討論.濟(jì)川中學(xué)初二年級(jí)隨機(jī)抽取部分學(xué)生進(jìn)行你對(duì)哪類在線學(xué)習(xí)方式最感興趣的調(diào)查(每位同學(xué)只能選一項(xiàng)),并根據(jù)調(diào)查結(jié)果繪制成如下兩幅不完整的統(tǒng)計(jì)圖.根據(jù)圖中信息,解答下列問題:

1)補(bǔ)全條形統(tǒng)計(jì)圖;

2)求扇形統(tǒng)計(jì)圖中在線閱讀對(duì)應(yīng)的扇形圓心角的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某企業(yè)計(jì)劃購買一些消毒液對(duì)廠區(qū)內(nèi)進(jìn)行消毒,有甲、乙兩種型號(hào)的消毒液供選擇,它們均按瓶銷售,每瓶容量都相同.購買甲消毒液瓶和乙消毒液瓶,需元;購買瓶甲消毒液與購買瓶乙消毒液所需錢數(shù)相同.

1)求甲、乙兩種消毒液的單價(jià)各是多少元?

2)現(xiàn)在企業(yè)決定只購買甲、乙消毒液中的一種即可,且甲消毒液按原價(jià)九折銷售,乙消毒液購買瓶以上超出的部分按原價(jià)的六五折銷售,設(shè)購買瓶甲消毒液需要元,購買瓶乙消毒液需要元,請(qǐng)用分別表示出;

3)在(2)的條件下,已知企業(yè)購買消毒液的數(shù)量多于瓶,問購買哪一種消毒液更省錢?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】商場(chǎng)銷售某種品牌的空調(diào)和電風(fēng)扇:

1)已知購進(jìn)8臺(tái)空調(diào)和20臺(tái)電風(fēng)扇共需17400元,購進(jìn)10臺(tái)空調(diào)和30臺(tái)電風(fēng)扇共需22500元,求每臺(tái)空調(diào)和電風(fēng)扇的進(jìn)貨價(jià);

2)已知空調(diào)標(biāo)價(jià)為2500元/臺(tái),電風(fēng)扇標(biāo)價(jià)為250元/臺(tái).若商場(chǎng)購進(jìn)空調(diào)和電風(fēng)扇共60臺(tái),并全部打八折出售,設(shè)其中空調(diào)的數(shù)量為a臺(tái),商場(chǎng)通過銷售這批空調(diào)和電風(fēng)扇獲得的利潤(rùn)為w元,求wa之間的函數(shù)關(guān)系式;

3)在(2)的條件下,若這批空調(diào)和電風(fēng)扇的進(jìn)貨價(jià)不超過45300元,商場(chǎng)通過銷售這批空調(diào)和電風(fēng)扇獲得的利潤(rùn)又不低于6000元,問商場(chǎng)共有多少種不同的進(jìn)貨方案,哪種進(jìn)貨方案獲得的利潤(rùn)最高?最高利潤(rùn)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,菱形ABCD的對(duì)角線ACBD相交于點(diǎn)O,AB=5,AC=6AC的平行線DEBC的延長(zhǎng)線于點(diǎn)E,則四邊形ACED的面積為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點(diǎn)OABC的兩條角平分線的交點(diǎn),過點(diǎn)OODBC,垂足為D,且OD4.若ABC的面積是34,則ABC的周長(zhǎng)為( 。

A.8.5B.15C.17D.34

查看答案和解析>>

同步練習(xí)冊(cè)答案