【題目】如圖,函數(shù)y=(x<0)的圖像與直線y=-x交于A點,將線段OA繞O點順時針旋轉(zhuǎn)30°,交函數(shù)y=(x<0)的圖像于B點,得到線段OB,若線段AB=3-,則k= _______________________.
【答案】-3
【解析】
作AC⊥x軸于C,BD⊥x軸于D,AE⊥BD于E點,設(shè)A點坐標為(3a,-a),則OC=-3a,AC=-a,利用勾股定理計算出OA=-2a,得到∠AOC=30°,再根據(jù)旋轉(zhuǎn)的性質(zhì)得到OA=OB,∠BOD=60°,易證得Rt△OAC≌Rt△BOD,OD=AC=-a,BD=OC=-3a,于是有AE=OC-OD=-3a+a,BE=BD-AC=-3a+a,即AE=BE,則△ABE為等腰直角三角形,利用等腰直角三角形的性質(zhì)得到3-=(-3a+a),求出a=1,確定A點坐標為(3,-),然后把A(3,-)代入函數(shù)y=即可得到k的值.
作AC⊥x軸與C,BD⊥x軸于D,AE⊥BD于E點,如圖,
點A在直線y=-x上,可設(shè)A點坐標為(3a,-a),
在Rt△OAC中,OC=-3a,AC=-a,
∴OA==-2a,
∴∠AOC=30°,
∵直線OA繞O點順時針旋轉(zhuǎn)30°得到OB,
∴OA=OB,∠BOD=60°,
∴∠OBD=30°,
∴Rt△OAC≌Rt△BOD,
∴OD=AC=-a,BD=OC=-3a,
∵四邊形ACDE為矩形,
∴AE=OC-OD=-3a+a,BE=BD-AC=-3a+a,
∴AE=BE,
∴△ABE為等腰直角三角形,
∴AB=AE,即3-=(-3a+a),
解得a=1,
∴A點坐標為(3,-),
而點A在函數(shù)y=的圖象上,
∴k=3×(-)=-3.
故答案為-3.
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙兩名同學分別用標有數(shù)字0、﹣1、4的三張卡片(除了數(shù)字不同以外,其余都相同)做游戲,他們將卡片洗勻后,將標有數(shù)字的一面朝下放在桌面上,甲先隨機抽取一張,抽出的卡片放回,乙再從三張卡片中隨機抽取一張.若規(guī)定甲同學抽到卡片上的數(shù)字比乙同學抽取到卡片上的數(shù)字大,則甲同學獲勝;否則乙同學獲勝.請你用列表法或畫樹狀圖法求哪名同學獲勝的概率大.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC=2,∠BAC=120°,點D、E都在邊BC上,∠DAE=60°.若BD=2CE,則DE的長為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知△ABC,D、E分別在邊AB、AC上,下列條件中,不能確定△ADE∽△ACB的是( )
A. ∠AED=∠B B. ∠BDE+∠C=180°
C. ADBC=ACDE D. ADAB=AEAC
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在梯形ABCD中,AD∥BC,BC=18,DB=DC=15,點E、F分別在線段BD、CD上,DE=DF=5.AE的延長線交邊BC于點G,AF交BD于點N、其延長線交BC的延長線于點H.
(1)求證:BG=CH;
(2)設(shè)AD=x,△ADN的面積為y,求y關(guān)于x的函數(shù)解析式,并寫出它的定義域;
(3)聯(lián)結(jié)FG,當△HFG與△ADN相似時,求AD的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,O為坐標原點,△AOB是等腰直角三角形,∠AOB=90°,點A(2,1).
(1)求點B的坐標;
(2)求經(jīng)過A、O、B三點的拋物線的函數(shù)表達式;
(3)在(2)所求的拋物線上,是否存在一點P,使四邊形ABOP的面積最大?若存在,求出點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】關(guān)于x的一元二次方程x2+(2m+1)x+m2﹣1=0有兩個不相等的實數(shù)根.
(1)求m的取值范圍;
(2)寫出一個滿足條件的m的值,并求此時方程的根.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】二次函數(shù)的圖象如圖所示,對稱軸為x=1,給出下列結(jié)論:①abc<0;②b2>4ac;③4a+2b+c<0;④2a+b=0..其中正確的結(jié)論有:
A. 4個 B. 3個 C. 2個 D. 1個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為早日實現(xiàn)脫貧奔小康的宏偉目標,我市結(jié)合本地豐富的山水資源,大力發(fā)展旅游業(yè),王家莊在當?shù)卣闹С窒,辦起了民宿合作社,專門接待游客,合作社共有80間客房.根據(jù)合作社提供的房間單價x(元)和游客居住房間數(shù)y(間)的信息,樂樂繪制出y與x的函數(shù)圖象如圖所示:
(1)求y與x之間的函數(shù)關(guān)系式;
(2)合作社規(guī)定每個房間價格不低于60元且不超過150元,對于游客所居住的每個房間,合作社每天需支出20元的各種費用,房價定為多少時,合作社每天獲利最大?最大利潤是多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com