【題目】為了節(jié)省材料,某農(nóng)場(chǎng)主利用圍墻(圍墻足夠長(zhǎng))為一邊,用總長(zhǎng)為80m的籬笆圍成了如圖所示的①②③三塊矩形區(qū)域,而且這三塊矩形區(qū)域的面積相等,則能?chē)傻木匦螀^(qū)域ABCD的面積最大值是___m2

【答案】300

【解析】

根據(jù)三個(gè)矩形面積相等,得到矩形AEFD面積是矩形BCFE面積的2倍,可得出AE2BE,設(shè)BEa,則有AE2a,表示出a2a,進(jìn)而表示出yx的關(guān)系式,并求出x的范圍即可;再利用二次函數(shù)的性質(zhì)求出面積S的最大值即可.

如圖,

∵三塊矩形區(qū)域的面積相等,

∴矩形AEFD面積是矩形BCFE面積的2倍,

AE2BE,

設(shè)BCxBEFCa,則AEHGDF2a,

DF+FC+HG+AE+EB+EF+BC80,即8a+2x80,

a=﹣x+103a=﹣x+30,

∴矩形區(qū)域ABCD的面積S=(﹣x+30x=﹣x2+30x,

a=﹣x+100

x40,

S=﹣x2+30x0x40);

S=﹣x2+30x=﹣x202+3000x40),且二次項(xiàng)系數(shù)為﹣0,

∴當(dāng)x20時(shí),S有最大值,最大值為300m2

故答案為:300

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我們把a(bǔ)、b兩個(gè)數(shù)中較小的數(shù)記作min{a,b},直線(xiàn)y=kx﹣k﹣2(k0)與函數(shù)y=min{x2﹣1、﹣x+1}的圖象有且只有2個(gè)交點(diǎn),則k的取值為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知拋物線(xiàn)的頂點(diǎn)為A(0,1),矩形CDEF的頂點(diǎn)C、F在拋物線(xiàn)上,點(diǎn)D、Ex軸上,CFy軸于點(diǎn)B(0,2),且矩形其面積為8,此拋物線(xiàn)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系中,直線(xiàn)l與坐標(biāo)軸相交于A2,0),B0)兩點(diǎn),將RtAOB繞原點(diǎn)O逆時(shí)針旋轉(zhuǎn)到RtAOB′.

1)求直線(xiàn)l的解析式;

2)若OA′⊥AB,垂足為D,求點(diǎn)D的坐標(biāo);

3)如圖2,若將RtAOB繞原點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°,AB′與直線(xiàn)l相交于點(diǎn)F,點(diǎn)Ex軸上一動(dòng)點(diǎn),試探究:是否存在點(diǎn)E,使得以點(diǎn)AE,F為頂點(diǎn)的三角形和△ABB′相似,若存在,請(qǐng)求出點(diǎn)E的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,將矩形紙片ABCD沿對(duì)角線(xiàn)BD折疊,點(diǎn)C落在點(diǎn)E處,BE交AD于點(diǎn)F,連接AE.

求證:(1)BF=DF;

(2)AE∥BD;

(3)若AB=6,AD=8,求BF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知拋物線(xiàn)的頂點(diǎn)為,與軸相交于點(diǎn),對(duì)稱(chēng)軸為直線(xiàn),點(diǎn)是線(xiàn)段的中點(diǎn).

1)求拋物線(xiàn)的表達(dá)式;

2)寫(xiě)出點(diǎn)的坐標(biāo)并求直線(xiàn)的表達(dá)式;

3)設(shè)動(dòng)點(diǎn),分別在拋物線(xiàn)和對(duì)稱(chēng)軸l上,當(dāng)以,,,為頂點(diǎn)的四邊形是平行四邊形時(shí),求,兩點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtABC中,ACBC,AB10,以AB為斜邊向上作RtABD,使∠ADB90°.連接CD,若CD7,則AD_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知點(diǎn)A,B的坐標(biāo)分別為(40),(32).

1)畫(huà)出AOB關(guān)于原點(diǎn)O對(duì)稱(chēng)的圖形COD;

2)將AOB繞點(diǎn)O按逆時(shí)針?lè)较蛐D(zhuǎn)90°得到EOF,畫(huà)出EOF;

3)點(diǎn)D的坐標(biāo)是   ,點(diǎn)F的坐標(biāo)是   ,此圖中線(xiàn)段BFDF的關(guān)系是   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,利用一面墻(墻的長(zhǎng)度不超過(guò)45m),用80m長(zhǎng)的籬笆圍一個(gè)矩形場(chǎng)地.

(1)怎樣圍才能使矩形場(chǎng)地的面積為750m2?

(2)能否使所圍矩形場(chǎng)地的面積為810m2 ,為什么?

查看答案和解析>>

同步練習(xí)冊(cè)答案