【題目】在平面直角坐標系中,、三點的坐標分別為、、

1)畫出,則的面積為_______

2)在中,點經(jīng)過平移后的對應點為,將作同樣的平移得到,畫出平移后的,并寫出點,的坐標_______);_______);

3中一點,將點向右平移4個單位,再向下平移6個單位得到點,則_______,_______

【答案】115;(2)圖見解析,;(3

【解析】

1)根據(jù)各點在坐標系中的位置描出各點,并順次連接即可;
2)根據(jù)圖形平移的性質(zhì)畫出平移后的△A′B′C′,并寫出點A′,B′的坐標即可;
3)根據(jù)點平移的性質(zhì)即可得出m、n的值.

解:(1)如圖,過軸于點

故答案為:15;

2)如圖,為所求,,

故答案為:,;

3n=-3+4=1m-6=-3,

故答案為:,

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】下列各等式中成立的是( )
A.﹣ =﹣2
B.﹣ =﹣0.6
C. =﹣13
D. =±6

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在給定的一張平行四邊形紙片上作一個菱形.甲、乙兩人的作法如下:

甲:連接AC,作AC的垂直平分線MN分別交AD,AC,BC于M,O,N,連接AN,CM,則四邊形ANCM是菱形.

乙:分別作A,B的平分線AE,BF,分別交BC,AD于E,F(xiàn),連接EF,則四邊形ABEF是菱形.

根據(jù)兩人的作法可判斷

A.甲正確,乙錯誤 B.乙正確,甲錯誤 C.甲、乙均正確 D.甲、乙均錯誤

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知△ABC的中線BD、CE相交于點O、M、N分別為OB、OC的中點.

(1)求證:MD和NE互相平分;

(2)若BD⊥AC,EM=2,OD+CD=7,求△OCB的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在圖a、圖b、圖c中都有直線mn,

(1)在圖a中,∠2和∠1、∠3之間的數(shù)量關系是__________________

(2)猜想:在圖b中,∠1、∠2、∠3、∠4之間的數(shù)量關系是____________________

(3)猜想:在圖c中,∠2、∠4和∠1、∠3、∠5的數(shù)量關系式是____________________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】形如半圓型的量角器直徑為4cm,放在如圖所示的平面直角坐標系中(量角器的中心與坐標原點O重合,零刻度線在x軸上),連接60°和120°刻度線的一個端點P、Q,線段PQ交y軸于點A,則點A的坐標為(
A.(﹣1,
B.(0,
C.( ,0)
D.(1,

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,⊙O的半徑是8,AB是⊙O的直徑,M為AB上一動點, = = ,則CM+DM的最小值為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD的內(nèi)角∠BAD、CDA的角平分線交于點EABC、BCD的角平分線交于點F

1)若∠F=70°,則∠ABC+BCD= ______ °;E= ______ °;

2)探索∠E與∠F有怎樣的數(shù)量關系,并說明理由;

3)給四邊形ABCD添加一個條件,使得∠E=F,所添加的條件為______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB是⊙O的直徑,AB=4,點M是OA的中點,過點M的直線與⊙O交于C,D兩點.若∠CMA=45°,則弦CD的長為

查看答案和解析>>

同步練習冊答案