精英家教網 > 初中數學 > 題目詳情

【題目】如圖所示,矩形ABCD中,AB=12cm,AD=5cm,EDC上一點(點E不與D、C重合)連接AE,以AE所在的直線為折痕,折疊紙片,點D的對應點為D′,點F為線段BC上一點,連接EF,以EF所在的直線為折痕折疊紙片,使點C的對應點C′落在直線ED′上,若CF=4時,DE=_____

【答案】210

【解析】

設DE=x,則EC=12-x,然后證明△FEC∽△EAD,則,然后依據比例關系列出關于x的方程求解即可.

DE=x,則EC=12-x.
由翻折的性質可知∠DEA=∠D′EA,∠CEF=∠C′EF,
∴∠AEF=90°.
∴∠DEA+∠CEF=90°.
又∵∠DAE+∠DEA=90°,
∴∠DAE=∠CEF.
又∵∠D=∠C=90°,
∴△FEC∽△EAD,

,即

解得x=2x=10.
故答案是:210.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】用兩個全等的等邊拼成如圖的菱形.現把一個含角的三角板與這個菱形疊合,使三角板的角的頂點與點重合,兩邊分別與、重合.將三角板繞點逆時針方向旋轉.

如圖,當三角板的兩邊分別與菱形的兩邊、相交于點、時,探求、的數量關系,并說明理由;

繼續(xù)旋轉三角板,當兩邊、分別交、的延長線于點、時,畫出旋轉后相應的圖形,并直接寫出、、滿足的數量關系式.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,小明欲測量一座古塔的高度,他拿出一根竹桿豎直插在地面上,然后自己退后,使眼睛通過竹桿的頂端剛好看到塔頂,若小明眼睛離地面竹桿頂端離地面,小明到竹桿的距離竹桿到塔底的距離,求這座古塔的高度.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】圖①是某公交車線路的收支差額y(票價總收入減去運營成本)與乘客量x的函數圖象.目前這條線路虧損,為了扭虧,有關部門舉行了提高票價的聽證會.乘客代表認為:公交公司應節(jié)約能源,改善管理,降低運營成本,以此舉實現扭虧.公交公司認為:運營成本難以下降,公司己盡力,提高票價才能扭虧.根據這兩種意見,可以把圖①分別改畫成圖②和圖③.下列說法正確的是(

A.A表示的是公交車公司票價為1B.B表示乘客為0

C.反應乘客意見的是②D.反應公交公司意見的是②

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,ABC,已知點D在線段AB的反向延長線上,AC的中點F作線段GEDAC的平分線于EBCG,AEBC

(1)求證ABC是等腰三角形;

(2)AE=8,AB=10,GC=2BG,ABC的周長

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖1,AD為△ABC的中線,延長ADE,使DEAD

1)試證明:△ACD≌△EBD;

2)用上述方法解答下列問題:如圖2AD為△ABC的中線,BMIADC,交ACM,若AMGM,求證:BGAC

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】(1)操作與探究:如圖,矩形紙片ABCD中,AB=8,將紙片折疊,使頂點B落在邊ADE點上,折痕的一端G點在邊BC上,BG=10.

①第一次折疊:當折痕的另一端點FAB邊上時,如圖1,求折痕GF的長;

②第二次折疊:當折痕的另一端點FAD邊上時,如圖2,證明四邊形BGEF為菱形,并求出折痕GF的長.

(2)拓展延伸:通過操作探究發(fā)現在矩形紙片ABCD中,AB=5,AD=13.如圖3所示,折疊紙片,使點A落在BC邊上的A′處,折痕為PQ.當點A′BC邊上移動時,折痕的端點P,Q也隨之移動.若限定點P,Q分別在AB,AD邊上移動,則點A′BC邊上可移動的最大距離是   

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】對于拋物線

對于拋物線

它與軸交點的坐標為________,與軸交點的坐標為________,頂點坐標為________.

在所給的平面直角坐標系中畫出此時拋物線;

結合圖象回答問題:當時,的取值范圍是________.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】為了促進節(jié)能減排,倡導節(jié)約用電,某市將實行居民生活用電階梯電價方案,圖中折線反映了每戶每月用電電費y(元)與用電量x(度)間的函數關系式.

1)根據圖象,階梯電價方案分為三個檔次,填寫下表:

檔次

第一檔

第二檔

第三檔

每月用電量x(度)

0x≤140



2)小明家某月用電120度,需交電費

3)求第二檔每月電費y(元)與用電量x(度)之間的函數關系式;

4)在每月用電量超過230度時,每多用1度電要比第二檔多付電費m元,小剛家某月用電290度,交電費153元,求m的值.

查看答案和解析>>

同步練習冊答案