【題目】已知,|a|=5,|b|=3,且a<b<0,則a+b=

【答案】-8
【解析】解:∵|a|=5,|b|=3,且a<b<0 ∴a=﹣5,b=﹣3,
∴a+b=﹣5﹣3=﹣8,
所以答案是﹣8.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解有理數(shù)的加法法則的相關(guān)知識(shí),掌握有理數(shù)加法法則:1、同號(hào)兩數(shù)相加,取相同的符號(hào),并把絕對(duì)值相加2、異號(hào)兩數(shù)相加,取絕對(duì)值較大的符號(hào),并用較大的絕對(duì)值減去較小的絕對(duì)值3、一個(gè)數(shù)與0相加,仍得這個(gè)數(shù),以及對(duì)絕對(duì)值的理解,了解正數(shù)的絕對(duì)值是其本身,0的絕對(duì)值是0,負(fù)數(shù)的絕對(duì)值是它的相反數(shù);注意:絕對(duì)值的意義是數(shù)軸上表示某數(shù)的點(diǎn)離開原點(diǎn)的距離.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在正方形ABCD中,P為對(duì)角線BD上的一點(diǎn),點(diǎn)E在AD的延長(zhǎng)線上,且PA=PE,PE交CD于F,連接CE.

(1)求證:△PCE是等腰直角三角形;
(2)如圖2,把正方形ABCD改為菱形ABCD,其他條件不變,當(dāng)∠ABC=120°時(shí),判斷△PCE的形狀,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一家商店進(jìn)行裝修,若請(qǐng)甲、乙兩個(gè)裝修組同時(shí)施工,8天可以完成,需付給兩組費(fèi)用共3520元;若先請(qǐng)甲組單獨(dú)做6天,再請(qǐng)乙組單獨(dú)做12天可以完成,需付給兩組費(fèi)用共3480元,問(wèn):

(1)甲、乙兩組單獨(dú)工作一天,商店應(yīng)各付多少元?

(2)已知甲組單獨(dú)完成需要12天,乙組單獨(dú)完成需要24天,單獨(dú)請(qǐng)哪組,商店應(yīng)付費(fèi)用較少?

(3)若裝修完后,商店每天可盈利200元,你認(rèn)為如何安排施工有利用商店經(jīng)營(yíng)?說(shuō)說(shuō)你的理由.(可以直接用(1)(2)中的已知條件)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,點(diǎn)A(﹣3,5)與點(diǎn)B關(guān)于x軸對(duì)稱,則( 。

A. B(3,5) B. B(﹣3,﹣5) C. B(5,3) D. B(5,﹣3)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】若a是某兩位數(shù)的十位上的數(shù)字,b是它的個(gè)位上的數(shù)字,則這個(gè)數(shù)可表示為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知一個(gè)直棱柱,它有21條棱,其中一條側(cè)棱長(zhǎng)為20,底面各邊長(zhǎng)都為4

(1)這是幾棱柱?

(2)它有多少個(gè)面?多少個(gè)頂點(diǎn)?

(3)這個(gè)棱柱的所有側(cè)面的面積之和是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,用四個(gè)螺絲將四條不可彎曲的木條圍成一個(gè)木框(形狀不限),不計(jì)螺絲大小,其中相鄰兩螺絲的距離依次為3、45、7,且相鄰兩木條的夾角均可調(diào)整.若調(diào)整木條的夾角時(shí)不破壞此木框,則任意兩個(gè)螺絲間的距離的最大值為(  )

A. 6 B. 7 C. 8 D. 9

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小明在計(jì)算多項(xiàng)式M加上x2﹣2x+9時(shí),因誤認(rèn)為加上x2+2x+9,得到答案2x2+2x,則M應(yīng)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】因式分解:x2y﹣9y=

查看答案和解析>>

同步練習(xí)冊(cè)答案