【題目】如圖1,在正方形ABCD中,P為對角線BD上的一點,點E在AD的延長線上,且PA=PE,PE交CD于F,連接CE.
(1)求證:△PCE是等腰直角三角形;
(2)如圖2,把正方形ABCD改為菱形ABCD,其他條件不變,當∠ABC=120°時,判斷△PCE的形狀,并說明理由.
【答案】
(1)
證明:如圖1中,
∵四邊形ABCD是正方形,
∴AD=DC,∠ADB=∠CDB=45°,∠ADC=90°,
在△PDA和△PDC中,
,
∴△PDA≌△PDC,
∴PA=PC,∠3=∠1,
∵PA=PE,
∴∠2=∠3,
∴∠1=∠2,
∵∠EDF=90°,∠DFE=∠PFC,
∴∠FPC=EDF=90°,
∴△PEC是等腰直角三角形
(2)
解:如圖2中,結(jié)論:△PCE是等邊三角形.
理由:∵四邊形ABCD是菱形,
∴AD=DC,∠ADB=∠CDB,∠ADC=∠ABC=120°,
在△PDA和△PDC中,
,
∴△PDA≌△PDC,
∴PA=PC,∠3=∠1,
∵PA=PE,
∴∠2=∠3,PA═PE=PC,
∴∠1=∠2,
∵∠DFE=∠PFC,
∴∠EPC=∠EDC,
∵∠ADC=120°,
∴∠EDC=60°,
∴∠EPC=60°,∵PE=PC,
∴△PEC是等邊三角形
【解析】(1)由△PDA≌△PDC,推出PA=PC,∠3=∠1,由PA=PE,推出∠2=∠3,推出∠1=∠2,由∠EDF=90°,∠DFE=∠PFC,推出∠FPC=EDF=90°,推出△PEC是等腰直角三角形;(2)由△PDA≌△PDC,推出PA=PC,∠3=∠1,由PA=PE,推出∠2=∠3,PA═PE=PC,推出∠1=∠2,由∠DFE=∠PFC,推出∠EPC=∠EDC,由∠ADC=120°,推出∠EDC=60°,推出∠EPC=60°,由PE=PC,即可證明△PEC是等邊三角形;
【考點精析】掌握等腰三角形的性質(zhì)是解答本題的根本,需要知道等腰三角形的兩個底角相等(簡稱:等邊對等角).
科目:初中數(shù)學 來源: 題型:
【題目】某種商品每件進價為20元,調(diào)查表明:在某段時間內(nèi)若以每件x元(20≤x≤30,且x為整數(shù))出售,可賣出(30﹣x)件.若使利潤最大,每件的售價應為元.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,O是矩形ABCD的對角線的交點,作DE∥AC,CE∥BD,DE、CE相交于點E.求證:
(1)四邊形OCED是菱形.
(2)連接OE,若AD=4,CD=3,求菱形OCED的周長和面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,Rt△ABC的斜邊AB在x軸上,AB=25,頂點C在y軸的負半軸上,AO:OC=3:4,點P在線段OC上,且PO、PC的長(PO<PC)是關于x的方程x2-12x+32=O的兩根.
(1) 求P點坐標求
(2) 求AC、BC的長;
(3)在x軸上是否存在點Q,使以點A、C、P、Q為頂點的四邊形是梯形?若存在,請直接寫出直線PQ的解析式;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校為了了解九年級學生體育測試成績情況,以九年級(1)班學生的體育測試成績?yōu)闃颖,按A、B、C、D四個等級進行統(tǒng)計,并將統(tǒng)計結(jié)果繪制成下兩幅統(tǒng)計圖(如圖),請你結(jié)合圖中所給信息解答下列問題:(說明:A級:90分—100分;B級:75分—89分;C級:60分—74分;D級:60分以下)
(1)D級學生的人數(shù)占全班人數(shù)的百分比為 ;
(2)扇形統(tǒng)計圖中C級所在扇形圓心角度數(shù)為 ;
(3)該班學生體育測試成績的中位數(shù)落在等級 內(nèi);
(4)若該校九年級學生共有500人,請你估計這次考試中A級和B級的學生共有多少人?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com