如圖,把一個長方形的紙片對折兩次,然后剪下一個角,為了得到一個鈍角為100° 的菱形,剪口與折痕所成的角的度數(shù)應為( 。
A.25°或50°B.20°或50°C.40°或50°D.40°或80°
C

試題分析:折痕為AC與BD,∠BAD=100°,根據(jù)菱形的性質可得∠ABD=40°,易得∠BAC=50°,即可得到剪口與折痕所成的角的度數(shù).

∵四邊形ABCD是菱形,
∴∠ABD=∠ABC,∠BAC=∠BAD,AD∥BC,
∵∠BAD=100°,
∴∠ABC=180°-∠BAD=180°-100°=80°,
∴∠ABD=40°,∠BAC=50°.
∴剪口與折痕所成的角a的度數(shù)應為40°或50°
故選C.
點評:解題的關鍵是熟練掌握折疊前后圖形的對應角相等;菱形的對角線平分每一組對角.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在矩形中,點是線段上一動點,的中點,的延長線交.

(1)求證:;(4分)
(2)若,從點出發(fā),以1cm/s的速度向運動(不與重合).設點運動時間為秒,請用表示的長;并求為何值時,四邊形是菱形.(6分)

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

ABCD 中,增加下列條件中的一個,就能斷定它是矩形的是(          )
A.∠A+∠C=180°B.AB=BCC.AC⊥BDD.AC=2AB

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,四邊形ABCD中,AD∥BC,AE⊥AD交BD于點E,CF⊥BC交BD于點F,且AE=CF.求證:四邊形ABCD是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖, 在長方形ABCD中,AB=3厘米.在CD邊上找一點E,沿直線AE把△ABE折疊,若點D恰好落在BC邊上點F處,且△ABF的面積是6平方厘米,則DE的長為( 。
A.2cmB.3cmC.2.5cmD.cm

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

兩組鄰邊分別相等的四邊形我們稱它為箏形.
如圖,在箏形中,,,相交于點,

(1)求證:①;
,;
(2)如果,求箏形的面積.(8分)

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

已知:如圖,在正方形ABCD外取一點E,連接AE、BE、DE.過點A作AE的垂線交DE于點P.若AE=AP=1,PB=.下列結論:①△APD≌△AEB;②點B到直線AE的距離為;③EB⊥ED;④S△APD+S△APB.其中正確結論的序號是
A.①③④B.①②③C.②③④D.①②④

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖1,矩形MNPQ中,點E,F(xiàn),G,H分別在NP,PQ,QM,MN上,若∠1=∠2=∠3=∠4,則稱四邊形EFGH為矩形MNPQ的反射四邊形.圖2,圖3,圖4中,四邊形ABCD為矩形,且AB=4,BC=8.


(1)理解與作圖:在圖2,圖3中,點E,F(xiàn)分別在BC,CD邊上,試利用正方形網(wǎng)格在圖上作出矩形ABCD的反射四邊形EFGH.
(2)計算與猜想:求圖2,圖3中反射四邊形EFGH的周長,并猜想矩形ABCD的反射四邊形的周長是否為定值?
(3)啟發(fā)與證明:如圖4,為了證明上述猜想,小華同學嘗試延長GF交BC的延長線于M,試利用小華同學給我們的啟發(fā)證明(2)中的猜想.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

已知ABCD的周長為32,AB=4,則BC=( 。
A.4B.12C.24D.28

查看答案和解析>>

同步練習冊答案