如圖,在矩形中,點是線段上一動點,的中點,的延長線交.

(1)求證:;(4分)
(2)若從點出發(fā),以1cm/s的速度向運動(不與重合).設(shè)點運動時間為秒,請用表示的長;并求為何值時,四邊形是菱形.(6分)
(1)通過對菱形的證明從而求證(2)

試題分析:(1)證明:∵四邊形ABCD是矩形
∴AD∥BC,                         
∴∠PDO=∠QBO
又∵OB=OD,∠POD=∠QOB
∴△POD≌△QOB            
∴OP=OQ                         4分
(2)①PD=8-t                             6分    
②若四邊形PBQD是菱形,則PB=PD=(8-t)cm,       7分
∵四邊形ABCD是矩形
∴∠A=90°
∴在Rt△ABP中,∵AB="6cm"
 

,                            9分
即運動時間為秒時,四邊形PBQD是菱形.   
點評:在解題時要能靈運用二次函數(shù)的圖象和性質(zhì)求出二次函數(shù)的解析式,利用數(shù)形結(jié)合思想解題是本題的關(guān)鍵.,
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:如圖,在平面直角坐標系O中,矩形OABC的邊OA在軸的正半軸上,OC在軸的正半軸上,OA=2,OC=3.過原點O作∠AOC的平分線交AB于點D,連接DC,過點D作DE⊥DC,交OA于點E.

(1)求過點E、D、C的拋物線的解析式;
(2)將∠EDC繞點D按順時針方向旋轉(zhuǎn)后,角的一邊與軸的正半軸交于點F,另一邊與線段OC交于點G.如果DF與(1)中的拋物線交于另一點M,點M的橫坐標為,那么EF=2GO是否成立?若成立,請給予證明;若不成立,請說明理由;
(3)對于(2)中的點G,在位于第一象限內(nèi)的該拋物線上是否存在點Q,使得直線GQ與AB的交點P與點C、G構(gòu)成的△PCG是等腰三角形?若存在,請求出點Q的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,把一個長方形紙片沿折疊后,點D,C分別落在D′,C′的位置.若=70°,則= _________。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,把一個長方形的紙片對折兩次,然后剪下一個角,為了得到一個鈍角為100° 的菱形,剪口與折痕所成的角的度數(shù)應(yīng)為( 。
A.25°或50°B.20°或50°C.40°或50°D.40°或80°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

若一個正多邊形的一個內(nèi)角是144°,則這個多邊形的邊數(shù)為
A.12 B.11C.10D.9

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,在矩形中,對角線相交于點 ,則的長是(      )
A.B.C.5D.10

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,分別以四邊形的四個頂點為圓心,以2cm為半徑作圓,則圖中陰影部分面積為_______________(結(jié)果用含的式子表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

下列四邊形中,對角線不互相平分的是(    ).
A.平行四邊形B.菱形C.正方形D.等腰梯形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

在□ABCD中,∠A、∠B的度數(shù)之比為5∶4,則∠C等于(    )

A.60°   B.80°   C.100°    D.120°

查看答案和解析>>

同步練習(xí)冊答案