【題目】已知a,b,c三個數(shù)在數(shù)軸上對應點的位置如圖所示,下列幾個判斷:①a<c<b;②ab<0;③a+b>0;④c﹣a<0中,錯誤的有( 。﹤.
A.1B.2C.3D.4
【答案】B
【解析】
由數(shù)軸分別得出a、b、c三個數(shù)的范圍,再根據(jù)有理數(shù)的運算法則對四個結論一一判斷即可.
由數(shù)軸可得:a<﹣2<-1<c<0<b<1,
①數(shù)軸上右邊的點表示的數(shù)總比左邊的點表示的數(shù)大,所以a<c<b,此結論正確;
②由數(shù)軸圖不難得出ab異號,故ab<0,此結論正確;
③異號兩數(shù)相加,取絕對值大的加數(shù)的符號,很明顯,|a|>|b|,所以a+b<0,此結論錯誤;
④正數(shù)減去負數(shù)所得差必為正數(shù),所以c﹣a>0,此結論錯誤.
故錯誤的有2個.
故選:B
科目:初中數(shù)學 來源: 題型:
【題目】如圖,等邊△ABC和等邊△ECD的邊長相等,BC與CD兩邊在同一直線上,請根據(jù)如下要求,使用無刻度的直尺,通過連線的方式畫圖.
(1)在圖1中畫一個直角三角形; (2)在圖2中畫出∠ACE的平分線.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=,AD=2,點E是BC邊上的一個動點,連接AE,過點D作DF⊥AE于點F,當BE的長為________時,△CDF為等腰三角形。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】有20筐白菜,以每筐為標準,超過和不足的千克數(shù)分別用正、負數(shù)來表示,記錄如下:
與標準質(zhì)量的差值(單位:) | 0 | 1 | 2.5 | |||
筐數(shù) | 1 | 4 | 2 | 3 | 2 | 8 |
(1)20筐白菜中,最重的一筐比最輕的一筐重 ;
(2)與標準質(zhì)量比較,20筐白菜總計超過或不足多少千克?
(3)若白菜每千克售價1.68元,則出售這20筐白菜一共可賣多少元?(結果保留整數(shù))
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在邊長為1個單位長度的小正方形組成的網(wǎng)格中,建立如圖所示的平面直角坐標系△ABC是格點三角形(頂點在網(wǎng)格線的交點上)
(1)先作△ABC關于原點O成中心對稱的△A1B1C1,再把△A1B1C1向上平移4個單位長度得到△A2B2C2;
(2)△A2B2C2與△ABC是否關于某點成中心對稱?若是,直接寫出對稱中心的坐標;若不是,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面坐標系中,已知線段,且的坐標分別為,點為線段的中點.
(1)線段與軸的位置關系是
(2)求點的坐標。
(3)在軸上是否存在點,使得三角形面積為3.若存在,求出點的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCD、等腰Rt△BPQ的頂點P在對角線AC上(點P與A、C不重合),QP與BC交于E,QP延長線與AD交于點F,連接CQ.
(1)①求證:AP=CQ;②求證:PA2=AFAD;
(2)若AP:PC=1:3,求tan∠CBQ.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小學的時候我們已經(jīng)學過分數(shù)的加減法法則:“同分母分數(shù)相加減,分母不變,分子相加減;異分母分數(shù)相加減,先通分,轉(zhuǎn)化為同分母分數(shù),再加減.”如:,反之,這個式子仍然成立,即:.
(1)問題發(fā)現(xiàn)
觀察下列等式:
①,
②,
③,…,
猜想并寫出第個式子的結果: .(直接寫出結果,不說明理由)
(2)類比探究
將(1)中的的三個等式左右兩邊分別相加得:
,
類比該問題的做法,請直接寫出下列各式的結果:
① ;
② ;
(3)拓展延伸
計算:.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(本小題滿分8分)某商家預測一種應季襯衫能暢銷市場,就用13200元購進了一批這種襯衫,面市后果然供不應求.商家又用28800元購進了第二批這種襯衫,所購數(shù)量是第一批購進量的2倍,但單價貴了10元.
(1)該商家購進的第一批襯衫是多少件?
(2)若兩批襯衫按相同的標價銷售,最后剩下50件按八折優(yōu)惠賣出,如果兩批襯衫全部售完后利潤率不低于25%(不考慮其它因素),那么每件襯衫的標價至少是多少元?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com