【題目】如圖,已知BE是△ABC的角平分線(xiàn),CP是△ABC的外角∠ACD的平分線(xiàn).延長(zhǎng)BE,BA分別交CP于點(diǎn)F,P.
(1)求證:∠BFC∠BAC;
(2)小智同學(xué)探究后提出等式:∠BAC=∠ABC+∠P.請(qǐng)通過(guò)推理演算判斷“小智發(fā)現(xiàn)”是否正確?
(3)若2∠BEC﹣∠P=180°,求∠ACB的度數(shù).
【答案】(1)證明見(jiàn)解析;(2)“小智發(fā)現(xiàn)”是錯(cuò)誤的,證明見(jiàn)解析;(3)∠ACB=60°.
【解析】
(1)根據(jù)角平分線(xiàn)的定義得到∠PCD=∠ACD,∠FBC=∠ABC,根據(jù)三角形的外角的性質(zhì)即可證明結(jié)論;
(2)根據(jù)(1)中的結(jié)論變形后可得結(jié)論;
(3)根據(jù)三角形的外角和角平分線(xiàn)的定義,綜合已知,等量代換可得結(jié)論.
(1)∵CP是∠ACD的平分線(xiàn),
∴∠PCD∠ACD.
∵BF是∠ABC的平分線(xiàn),
∴∠FBC∠ABC,
∴∠BFC=∠PCD﹣∠FBC(∠ACD﹣∠ABC)∠BAC;
(2)由(1)知∠BFC∠BAC,
∴∠BAC=2∠BFC=2×(∠ABC+∠P)=∠ABC+2∠P,
∴“小智發(fā)現(xiàn)”是錯(cuò)誤的;
(3)△ABE中,∠BEC=∠ABE+∠BAC∠ABC+∠BAC,
△ACP中,∠BAC=∠ACP+∠P,
∴∠BEC∠ABC+∠ACP+∠P∠ABC+∠PCD+∠P.
∵∠PCD∠ABC+∠BFC,
∴∠BEC∠ABC+∠P∠ABC∠BAC=∠ABC+∠P∠BAC.
∵2∠BEC﹣∠P=180°,
∴∠BEC∠P=90°,
∴90°∠P=∠ABC+∠P∠BAC,
180°+∠P=2∠ABC+2∠P+∠BAC,
180°=∠ABC+∠P+180°﹣∠ACB,
∠ACB=∠ABC+∠P=∠PCD=∠ACP,
∴∠ACB=60°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小剛準(zhǔn)備用一段長(zhǎng) 44 米的籬笆圍成三角形,用于養(yǎng)雞。已知一條邊長(zhǎng) x 米,第二條邊是第一條邊的 3 倍多 6 米。
(1)若能?chē)梢粋(gè)等腰三角形,求三邊長(zhǎng)
(2)若第一邊長(zhǎng)最短,寫(xiě)出 x 的取值范圍 。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】“龜兔賽跑”是同學(xué)們熟悉的寓言故事.如圖所示,表示了寓言中的龜、兔的路程S和時(shí)間t的關(guān)系(其中直線(xiàn)段表示烏龜,折線(xiàn)段表示兔子).下列敘述正確的是( )
A. 賽跑中,兔子共休息了50分鐘
B. 烏龜在這次比賽中的平均速度是0.1米/分鐘
C. 兔子比烏龜早到達(dá)終點(diǎn)10分鐘
D. 烏龜追上兔子用了20分鐘
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某中學(xué)開(kāi)展以“我最喜歡的職業(yè)”為主題的調(diào)查活動(dòng).通過(guò)對(duì)學(xué)生的隨機(jī)抽樣調(diào)查得到一組數(shù)據(jù),下面兩圖(如圖)是根據(jù)這組數(shù)據(jù)繪制的兩幅不完整的統(tǒng)計(jì)圖.請(qǐng)你根據(jù)圖中所提供的信息解答下列問(wèn)題:
(1)在這次活動(dòng)中一共調(diào)查了 名學(xué)生;
(2)在扇形統(tǒng)計(jì)圖中,求“教師”所在扇形的圓心角的度數(shù);
(3)把折線(xiàn)統(tǒng)計(jì)圖補(bǔ)充完整;
(4)如果某中學(xué)共有2400名學(xué)生,請(qǐng)你估計(jì)該中學(xué)“我最喜歡的職業(yè)是教師”的有多少名學(xué)生?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,是正三角形內(nèi)的一點(diǎn),且,,.若將繞點(diǎn)逆時(shí)針旋轉(zhuǎn)60°后,得到,則________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】購(gòu)物廣場(chǎng)內(nèi)甲、乙兩家商店對(duì)A、B兩種商品均有優(yōu)惠促銷(xiāo)活動(dòng);
甲商店的促銷(xiāo)方案是:A商品打八折,B商品打七五折;
乙商店的促銷(xiāo)方案是:購(gòu)買(mǎi)一件A商品,贈(zèng)送一件B商品,多買(mǎi)多送。
請(qǐng)你結(jié)合小明和小華的對(duì)話(huà),解答下列問(wèn)題:
(1)求A、B兩種商品促銷(xiāo)前的單價(jià);
(2)假設(shè)在同一家商店購(gòu)買(mǎi)A、B兩種商品共100件,且A不超過(guò)50件,請(qǐng)說(shuō)明選擇哪家商店購(gòu)買(mǎi)更合算。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,平面直角坐標(biāo)系xoy中,拋物線(xiàn)y=a(x+1)(x-9)經(jīng)過(guò)A,B兩點(diǎn),四邊形OABC
矩形,已知點(diǎn)A坐標(biāo)為(0,6)。
(1) 求拋物線(xiàn)解析式;
(2) 點(diǎn)E在線(xiàn)段AC上移動(dòng)(不與C重合),過(guò)點(diǎn)E作EF⊥BE,交x軸于點(diǎn)F.請(qǐng)判斷的值是否變化;若不變,求出它的值;若變化,請(qǐng)說(shuō)明理由。
(3)在(2)的條件下,若E在直線(xiàn)AC上移動(dòng),當(dāng)點(diǎn)E關(guān)于直線(xiàn)BF的對(duì)稱(chēng)點(diǎn)在拋物線(xiàn)對(duì)稱(chēng)軸上時(shí),請(qǐng)求出BE的長(zhǎng)度。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四邊形中,∥,=2,為的中點(diǎn),請(qǐng)僅用無(wú)刻度的直尺分別按下列要求畫(huà)圖(保留作圖痕跡)
(1)在圖1中,畫(huà)出△ABD的BD邊上的中線(xiàn);
(2)在圖2中,若BA=BD, 畫(huà)出△ABD的AD邊上的高 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形ABCD中,,,E是AB上一點(diǎn),連接CE,現(xiàn)將向上方翻折,折痕為CE,使點(diǎn)B落在點(diǎn)P處.
(1)當(dāng)點(diǎn)P落在CD上時(shí),_____;當(dāng)點(diǎn)P在矩形內(nèi)部時(shí),BE的取值范圍是_____.
(2)當(dāng)點(diǎn)E與點(diǎn)A重合時(shí):①畫(huà)出翻折后的圖形(尺規(guī)作圖,保留作圖痕跡);②連接PD,求證:;
(3)如圖,當(dāng)點(diǎn)Р在矩形ABCD的對(duì)角線(xiàn)上時(shí),求BE的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com