【題目】如圖:在△ABC中,∠ABC=90°,AB=BC=8cm,動點P從點A出發(fā),以2cm/s的速度沿射線AB運動,同時動點Q從點C出發(fā),以2cm/s的速度沿邊BC的延長線運動,PQ與直線AC相交于點D.設P點運動時間為t秒,△PCQ的面積為S cm2.
(1)直接寫出AC的長:AC= cm;
(2)求出S關于t的函數關系式,并求出當點P運動幾秒時,S△PCQ=S△ABC
【答案】(1)8(2)2+2
【解析】
(1)在Rt△ABC中,利用勾股定理可求出AC的長;
(2)利用三角形的面積公式可找出S關于t的函數關系式,分0<t≤4和t>4兩種情況,找出關于t的一元二次方程,解之取合適的值即可得出結論.
(1)在Rt△ABC中,∠ABC=90°,AB=BC=8cm,
∴AC==8 cm.
故答案為:8;
(2)∵AP=CQ=2t,AB=8,
∴BP=|82t|,
∴S=CQBP=t|82t|,
即S=.
當0<t≤4時,2t2+8t=AB×BC=×8×8,
整理,得:t24t+16=0,
∵△=(4)24×1×16=48<0,
∴該方程無解;
當t>4時,2t28t=×8×8,
整理,得:t24t16=0,
解得:t1=22(不合題意,舍去),t2=2+2.
∴當點P運動(2+2)秒時,S△PCQ=S△ABC.
科目:初中數學 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=4,AD=5,連接AC,O是AC的中點,M是AD上一點,且MD=1,P是BC上一動點,則PM﹣PO的最大值為_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:如圖,在正方形ABCD中,點E在邊CD上,AQ⊥BE于點Q,DP⊥AQ于點P.
(1)求證:AP=BQ;
(2)在不添加任何輔助線的情況下,請直接寫出圖中四對線段,使每對中較長線段與較短線段長度的差等于PQ的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC=5,BC=4,D為邊AB上一動點(B點除外),以CD為一邊作正方形CDEF,連接BE,則△BDE面積的最大值為______.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,四邊形ABCD為正方形,△AEF為等腰直角三角形,∠AEF=90°,連接FC,G為FC的中點,連接GD,ED.
(1)如圖①,E在AB上,直接寫出ED,GD的數量關系.
(2)將圖①中的△AEF繞點A逆時針旋轉,其它條件不變,如圖②,(1)中的結論是否成立?說明理由.
(3)若AB=5,AE=1,將圖①中的△AEF繞點A逆時針旋轉一周,當E,F,C三點共線時,直接寫出ED的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知二次函數y=ax2+bx+c的圖像如圖所示,對稱軸為直線x=1.有位學生寫出了以下五個結論:
(1)ac>0;
(2)方程ax2+bx+c=0的兩根是x1=-1,x2=3;
(3)2a-b=0;
(4)當x>1時,y隨x的增大而減小;
(5)3a+2b+c>0
則以上結論中不正確的有( )
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知拋物線上最高點坐標為(-1,4),且拋物線經過點B(1,0)
(1)求此拋物線的解析式;
(2)設拋物線與X軸另一個交點為A,交Y軸于點C,請在拋物線的對稱軸上找一點P,使△PBC周長最小,并求出點P的坐標;
(3)點M是拋物線對稱軸上一動點,點N是拋物線上一動點(不與點A,B重合),試問:是否存在點M,N,使得以點A、B、M、N為頂點的四邊形是平行四邊形?若存在,請求出點M、N的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】正方形 ABCD 中,AB=3cm,動點 M 自A 點出發(fā)沿 AB 方向以每秒 1cm 的速度運動,同時點 N 自D 點出發(fā)沿折線 DC→CB 以每秒 2cm 的速度運動,到達 B 點時運動同時停止,設△AMN 的面積為 y(cm2),運動時間為 x(秒),則下列圖象中能大致反映 y 與 x 之間函數關系的是( )
A.B.C.D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為提升學生的藝術素養(yǎng),學習計劃開設四門藝術選修課:A書法;B繪畫;C樂器;D舞蹈,為了解學生對四門功課的喜歡情況,在全校范圍內隨機抽取若干名學生進行問卷調查(每個被調查的學生必須選擇而且只能選擇其中一門),將數據進行整理,并繪制成如下兩幅不完整的統計圖,請結合圖中所給信息解答下列問題:
(1)本次調查的學生共有 人,扇形統計圖中∠α的度數是 ;
(2)請把條形統計圖補充完整;
(3)如果該校共有2500名學生,請你估計該校D類學生約有多少人?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com