【題目】甲、乙兩名隊(duì)員參加射擊訓(xùn)練,成績(jī)分別被制成下列兩個(gè)統(tǒng)計(jì)圖:
根據(jù)以上信息,整理分析數(shù)據(jù)如下:
平均成績(jī)/環(huán) | 中位數(shù)/環(huán) | 眾數(shù)/環(huán) | 方差 | |
甲 | a | 7 | 7 | 1.2 |
乙 | 7 | b | 8 | c |
(1)寫出表格中a,b,c的值:a= ,b= ,c= .
(2)如果乙再射擊一次,命中7環(huán),那么乙的射擊成績(jī)的方差 .(填“變大”“變小”“不變”)
(3)教練根據(jù)這10次成績(jī)?nèi)暨x擇甲參加比賽,教練的理由是什么?
【答案】(1)a=7,b=7.5,c=4.2;(2)變。唬3)選擇甲參加射擊比賽.
【解析】
(1)利用平均數(shù)的計(jì)算公式直接計(jì)算平均分即可;將乙的成績(jī)從小到大重新排列,用中位數(shù)的定義直接寫出中位數(shù)即可;根據(jù)乙的平均數(shù)利用方差的公式計(jì)算即可;
(2)如果乙再射擊一次,命中7環(huán),那么乙的射擊成績(jī)的平均數(shù)不變,求得方差即可得出結(jié)論;
(3)他們的平均數(shù)相同,而甲的方差小,發(fā)揮比較穩(wěn)定,所以選擇甲參加射擊比賽.
解:(1)甲的平均成績(jī)a==7(環(huán)),
甲的成績(jī)的眾數(shù)c=7(環(huán)),
∵乙射擊的成績(jī)從小到大重新排列為:3、4、6、7、7、8、8、8、9、10,
∴乙射擊成績(jī)的中位數(shù)b==7.5(環(huán)),
其方差d=×[(3﹣7)2+(4﹣7)2+(6﹣7)2+2×(7﹣7)2+3×(8﹣7)2+(9﹣7)2+(10﹣7)2]
=×(16+9+1+3+4+9)
=4.2;
故答案為:7,7.5,4.2;
(2)如果乙再射擊一次,命中7環(huán),那么乙的射擊成績(jī)的平均數(shù)不變,方差為:
×[(3﹣7)2+(4﹣7)2+(6﹣7)2+2×(7﹣7)2+3×(8﹣7)2+(9﹣7)2+(10﹣7)2+(7﹣7)2]
=×(16+9+1+3+4+9)
=<4.2;
∴乙的射擊成績(jī)的方差變小,
故答案為:變;
(3)因?yàn)樗麄兊钠骄鶖?shù)相同,而甲的方差小,發(fā)揮比較穩(wěn)定,所以選擇甲參加射擊比賽.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某校數(shù)學(xué)興趣小組利用自制的直角三角形硬紙板DEF來測(cè)量操場(chǎng)旗桿AB的高度,他們通過調(diào)整測(cè)量位置,使斜邊DF與地面保持平行,并使邊DE與旗桿頂點(diǎn)A在同一直線上,已知DE=1米,EF=0.5米,測(cè)點(diǎn)D到地面的距離DG=3米,到旗桿的水平距離DC=40米,求旗桿的高度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】三角板是我們學(xué)習(xí)數(shù)學(xué)的好幫手.將一對(duì)直角三角板如圖放置,點(diǎn)C在FD的延長(zhǎng)線上,點(diǎn)B在ED上,AB∥CF,∠F=∠ACB=90°,∠E=45°,∠A=60°,AC=10,則CD的長(zhǎng)度是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小敏打算在某外賣網(wǎng)站點(diǎn)如下表所示的菜品和米飯.已知每份訂單的配送費(fèi)為3元,商家為促銷,對(duì)每份訂單的總價(jià)(不含配送費(fèi))提供滿減優(yōu)惠:滿30元減12元,滿60元減30元,滿100元減45元.如果小敏在購買下表的所有菜品和米飯時(shí),采取適當(dāng)?shù)南聠畏绞剑敲此目傎M(fèi)用最低可為( )
菜品 | 單價(jià)(含包裝費(fèi)) | 數(shù)量 | |
水煮牛肉(小) | 30元 | 1 | |
醋溜土豆絲(。 | 12元 | 1 | |
豉汁排骨(。 | 30元 | 1 | |
手撕包菜(。 | 12元 | 1 | |
米飯 | 3元 | 2 |
A.48元B.51元C.54元D.59元
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:△ABC中,點(diǎn)D為邊BC上一點(diǎn),點(diǎn)E在邊AC上,且∠ADE=∠B
(1) 如圖1,若AB=AC,求證:;
(2) 如圖2,若AD=AE,求證:;
(3) 在(2)的條件下,若∠DAC=90°,且CE=4,tan∠BAD=,則AB=____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知拋物線L:經(jīng)過點(diǎn)A(-3,0)和點(diǎn)B(0,-6),L關(guān)于原點(diǎn)O對(duì)稱的拋物線為.
(1)求拋物線L的表達(dá)式;
(2)點(diǎn)P在拋物線上,且位于第一象限,過點(diǎn)P作PD⊥y軸,垂足為D.若△POD與△AOB相似,求符合條件的點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】直線與反比例函數(shù)(>0)的圖象分別交于點(diǎn) A(,4)和點(diǎn)B(8,),與坐標(biāo)軸分別交于點(diǎn)C和點(diǎn)D.
(1)求直線AB的解析式;
(2)觀察圖象,當(dāng)時(shí),直接寫出的解集;
(3)若點(diǎn)P是軸上一動(dòng)點(diǎn),當(dāng)△COD與△ADP相似時(shí),求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知點(diǎn)A(﹣2,﹣4),直線x=﹣2與x軸相交于點(diǎn)B,連接OA,拋物線y=﹣x2從點(diǎn)O沿OA方向平移,與直線x=﹣2交于點(diǎn)P,頂點(diǎn)M到點(diǎn)A時(shí)停止移動(dòng).
(1)線段OA所在直線的函數(shù)解析式是 ;
(2)設(shè)平移后拋物線的頂點(diǎn)M的橫坐標(biāo)為m,問:當(dāng)m為何值時(shí),線段PA最長(zhǎng)?并求出此時(shí)PA的長(zhǎng).
(3)若平移后拋物線交y軸于點(diǎn)Q,是否存在點(diǎn)Q使得△OMQ為等腰三角形?若存在,請(qǐng)求出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】鮮豐水果店計(jì)劃用元/盒的進(jìn)價(jià)購進(jìn)一款水果禮盒以備銷售.
據(jù)調(diào)查,當(dāng)該種水果禮盒的售價(jià)為元/盒時(shí),月銷量為盒,每盒售價(jià)每增長(zhǎng)元,月銷量就相應(yīng)減少盒,若使水果禮盒的月銷量不低于盒,每盒售價(jià)應(yīng)不高于多少元?
在實(shí)際銷售時(shí),由于天氣和運(yùn)輸?shù)脑,每盒水果禮盒的進(jìn)價(jià)提高了,而每盒水果禮盒的售價(jià)比(1)中最高售價(jià)減少了,月銷量比(1)中最低月銷量盒增加了,結(jié)果該月水果店銷售該水果禮盒的利潤(rùn)達(dá)到了元,求的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com