【題目】如圖,是矗立在高速公路水平地面上的交通警示牌,經(jīng)測(cè)量得到如下數(shù)據(jù):AM=4米,AB=8米,∠MAD=45°,∠MBC=30°,則警示牌的高CD為 米(結(jié)果精確到0.1米,參考數(shù)據(jù):=1.41,=1.73).

【答案】2.9
【解析】解:由題意可得:∵AM=4米,∠MAD=45°,
∴DM=4m,
∵AM=4米,AB=8米,
∴MB=12米,
∵∠MBC=30°,
∴BC=2MC,
∴MC2+MB2=(2MC)2 ,
MC2+122=(2MC)2 ,
∴MC=4
則DC=4﹣4≈2.9(米),
故答案為:2.9.
首先根據(jù)等腰直角三角形的性質(zhì)可得DM=AM=4m,再根據(jù)勾股定理可得MC2+MB2=(2MC)2 , 代入數(shù)可得答案.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+c(a,b,c是常數(shù),且a≠0)的圖象如圖所示,則一次函數(shù)y=cx+ 與反比例函數(shù)y= 在同一坐標(biāo)系內(nèi)的大致圖象是(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,坐標(biāo)平面上,二次函數(shù)y=﹣x2+4x﹣k的圖形與x軸交于A,B兩點(diǎn),與y軸交于C點(diǎn),其頂點(diǎn)為D,且k>0,若△ABC與△ABD的面積比為1:4,則k的值為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某中學(xué)為了解本校學(xué)生對(duì)球類運(yùn)動(dòng)的愛(ài)好情況,采用抽樣的方法,從足球、籃球、排球、其它等四個(gè)方面調(diào)查了若干名學(xué)生,并繪制成“折線統(tǒng)計(jì)圖”與“扇形統(tǒng)計(jì)圖”.請(qǐng)你根據(jù)圖中提供的部分信息解答下列問(wèn)題:

(1)在這次調(diào)查活動(dòng)中,一共調(diào)查了名學(xué)生;
(2)“足球”所在扇形的圓心角是度;
(3)補(bǔ)全折線統(tǒng)計(jì)圖.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系XOY中,直線l1過(guò)點(diǎn)A(1,0)且與y軸平行,直線l2過(guò)點(diǎn)B(0,2)且與x軸平行,直線l1與直線l2相交于點(diǎn)P.點(diǎn)E為直線l2上一點(diǎn),反比例函數(shù) (k>0)的圖象過(guò)點(diǎn)E與直線l1相交于點(diǎn)F.
(1)若點(diǎn)E與點(diǎn)P重合,求k的值;
(2)連接OE、OF、EF.若k>2,且△OEF的面積為△PEF的面積的2倍,求E點(diǎn)的坐標(biāo);
(3)是否存在點(diǎn)E及y軸上的點(diǎn)M,使得以點(diǎn)M、E、F為頂點(diǎn)的三角形與△PEF全等?若存在,求E點(diǎn)坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】2015朝陽(yáng))如圖,在△ABC中,以AB為直徑的⊙O交AC于點(diǎn)D,過(guò)點(diǎn)D作DE⊥BC于點(diǎn)E,且∠BDE=∠A.

(1)判斷DE與⊙O的位置關(guān)系并說(shuō)明理由;
(2)若AC=16,tanA= , 求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,∠C=90°,點(diǎn)P是斜邊AB的中點(diǎn),點(diǎn)M從點(diǎn)C向點(diǎn)A勻速運(yùn)動(dòng),點(diǎn)N從點(diǎn)B向點(diǎn)C勻速運(yùn)動(dòng),已知兩點(diǎn)同時(shí)出發(fā),同時(shí)到達(dá)終點(diǎn),連接PM、PN、MN,在整個(gè)運(yùn)動(dòng)過(guò)程中,△PMN的面積S與運(yùn)動(dòng)時(shí)間t的函數(shù)關(guān)系圖象大致是( 。

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩人在100米直道AB上練習(xí)勻速往返跑,若甲、乙分別中A,B兩端同時(shí)出發(fā),分別到另一端點(diǎn)處掉頭,掉頭時(shí)間不計(jì),速度分別為5m/s和4m/s.
(1)在坐標(biāo)系中,虛線表示乙離A端的距離s(單位:m)與運(yùn)動(dòng)時(shí)間t(單位:s)之間的函數(shù)圖象(0≤t≤200),請(qǐng)?jiān)谕蛔鴺?biāo)系中用實(shí)線畫(huà)出甲離A端的距離s與運(yùn)動(dòng)時(shí)間t之間的函數(shù)圖象(0≤t≤200);

(2)根據(jù)(1)中所畫(huà)圖象,完成下列表格:

兩人相遇次數(shù)
(單位:次)

1

2

3

4

n

兩人所跑路程之和
(單位:m)

100

300

 


(3)①直接寫(xiě)出甲、乙兩人分別在第一個(gè)100m內(nèi),s與t的函數(shù)解析式,并指出自變量t的取值范圍;
②當(dāng)t=390s時(shí),他們此時(shí)相遇嗎?若相遇,應(yīng)是第幾次?若不相遇,請(qǐng)通過(guò)計(jì)算說(shuō)明理由,并求出此時(shí)甲離A端的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算:
(1)|﹣4|﹣20150+(1﹣(2
(2)(1+)÷

查看答案和解析>>

同步練習(xí)冊(cè)答案