【題目】已知四邊形和四邊形都是正方形,且.
(1)如圖1,連接、.求證:;
(2)如圖2,如果正方形繞點(diǎn)旋轉(zhuǎn)到某一位置恰好使得,.
①求的度數(shù);
②若正方形的邊長是,請求出的面積.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為積極響應(yīng)新舊動(dòng)能轉(zhuǎn)換.提高公司經(jīng)濟(jì)效益.某科技公司近期研發(fā)出一種新型高科技設(shè)備,每臺(tái)設(shè)備成本價(jià)為30萬元,經(jīng)過市場調(diào)研發(fā)現(xiàn),每臺(tái)售價(jià)為40萬元時(shí),年銷售量為600臺(tái);每臺(tái)售價(jià)為45萬元時(shí),年銷售量為550臺(tái).假定該設(shè)備的年銷售量y(單位:臺(tái))和銷售單價(jià)(單位:萬元)成一次函數(shù)關(guān)系.
(1)求年銷售量與銷售單價(jià)的函數(shù)關(guān)系式;
(2)根據(jù)相關(guān)規(guī)定,此設(shè)備的銷售單價(jià)不得高于70萬元,如果該公司想獲得10000萬元的年利潤.則該設(shè)備的銷售單價(jià)應(yīng)是多少萬元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,Rt△ABC的三個(gè)頂點(diǎn)分別是A(-3,2),B(0,4),C(0,2).
(1)將△ABC以點(diǎn)C為旋轉(zhuǎn)中心旋轉(zhuǎn)180°,畫出旋轉(zhuǎn)后對應(yīng)的△C;平移△ABC,若A的對應(yīng)點(diǎn)的坐標(biāo)為(0,4),畫出平移后對應(yīng)的△;
(2)若將△C繞某一點(diǎn)旋轉(zhuǎn)可以得到△,請直接寫出旋轉(zhuǎn)中心的坐標(biāo);
(3)在軸上有一點(diǎn)P,使得PA+PB的值最小,請直接寫出點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線與軸、軸分別相交于、兩點(diǎn),點(diǎn)是的中點(diǎn),點(diǎn)、分別為線段、上的動(dòng)點(diǎn),將沿折疊,使點(diǎn)的對稱點(diǎn)恰好落在線段上(不與端點(diǎn)重合).連接分別交、于點(diǎn)、,連接.
(1)求的值;
(2)試判斷與的位置關(guān)系,并加以證明;
(3)若,求點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=3,BC=4,O為矩形ABCD的中心,以D為圓心1為半徑作⊙D,P為⊙D上的一個(gè)動(dòng)點(diǎn),連接AP、OP,則△AOP面積的最大值為( )
A. 4 B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某大學(xué)生創(chuàng)業(yè)團(tuán)隊(duì)抓住商機(jī),購進(jìn)一批干果分裝成營養(yǎng)搭配合理的小包裝后出售,每袋成本3元.試銷期間發(fā)現(xiàn)每天的銷售量(袋與銷售單價(jià)(元之間滿足一次函數(shù)關(guān)系,部分?jǐn)?shù)據(jù)如表所示,其中3.5≤x≤5.5.另外每天還需支付其他各項(xiàng)費(fèi)用80元.
銷售單價(jià)(元 | 3.5 | 5.5 |
銷售量(袋 | 280 | 120 |
(1)請求出與之間的函數(shù)關(guān)系式;
(2)設(shè)每天的利潤為元,當(dāng)銷售單價(jià)定為多少元時(shí),每天的利潤最大?最大利潤是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明同學(xué)在一次社會(huì)實(shí)踐活動(dòng)中,通過對某種蔬菜在1月份至7月份的市場行情進(jìn)行統(tǒng)計(jì)分析后得出如下規(guī)律:
①該蔬菜的銷售價(jià)(單位:元/千克)與時(shí)間(單位:月份)滿足關(guān)系: ;
②該蔬菜的平均成本(單位:元/千克)與時(shí)間(單位:月份)滿足二次函數(shù)關(guān)系.已知4月份的平均成本為2元/千克,6月份的平均成本為1元/千克.
(1)求該二次函數(shù)的解析式;
(2)請運(yùn)用小明統(tǒng)計(jì)的結(jié)論,求出該蔬菜在第幾月份的平均利潤(單位:元/千克)最大?最大平均利潤是多少?(注:平均利潤銷售價(jià)平均成本)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于的方程
(1)求證:無論為何值,方程總有實(shí)數(shù)根.
(2)設(shè),是方程的兩個(gè)根,記,S的值能為2嗎?若能,求出此時(shí)的值;若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△ABC中,∠C=90°,D為BC邊上一動(dòng)點(diǎn),過D作DE⊥AD交AB于E,AC=2,BC=4,當(dāng)D點(diǎn)從C點(diǎn)運(yùn)動(dòng)到B點(diǎn)時(shí),點(diǎn)E運(yùn)動(dòng)的路徑長為_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com