【題目】如圖,已知和均為的等邊三角形,點為的中點,過點與平行的直線交射線于點.
(1)當,,三點在同一直線上時(如圖1),求證:為中點;
(2)將圖1中的繞點旋轉,當,,三點在同一直線上時(如圖2),求證:為等邊三角形;
(3)將圖2中繞點繼續(xù)順時針旋轉多少度時,點恰好第一次位于線段中點,試作出圖形并直接寫出繞點繼續(xù)旋轉的度數(shù).
【答案】(1)見解析;(2)見解析;(3)繞點繼續(xù)順時針旋轉30度時,點恰好第一次位于線段中點
【解析】
(1) 根據(jù),點為的中點,可證明,從而,可得到答案;
(2) 先證明,得到,再證由一個角是60°,即證明是等邊三角形;
(3) 先證明,證,得到是等邊三角形,再利用點恰好第一次位于線段中點,可得到答案.
證明:(1)∵,
∴,,
∵點為的中點,
∴,
在和中,
∴,
∴,即為中點.
(2)∵,
∴,(1)中已經(jīng)證明,
∴,
∵,,三點在同一直線上,
∴,
∵,,
在和中,
∴.
∴,.
∴為等邊三角形(由一個角是60°的等腰三角形是等邊三角形).
(3)如圖,當繞點繼續(xù)旋轉時,點在線段上.
繞點繼續(xù)旋轉30度時,點恰好第一次位于線段中點.
(附理由:∵,
∴(1)中已經(jīng)證明,
∴,
∵,,
∴.
又,
∴.
∵,
∴.
∴,.
∴為等邊三角形.
∴當點恰好位于線段中點時,,
∴.
∵,
∴,
即繞點繼續(xù)順時針旋轉30度時,點恰好第一次位于線段中點.
科目:初中數(shù)學 來源: 題型:
【題目】我市公交總公司為節(jié)約資源同時惠及民生,擬對一些乘客數(shù)量較少的路線換成中巴車.該公司計劃購買臺中巴車,現(xiàn)有甲、乙兩種型號,已知購買一臺甲型車比購買一臺乙型車少萬元,購買臺甲型車比購買臺乙型車多萬元.
(1)問購買一臺甲型車和一臺乙型車分別需要多少萬元?
(2)經(jīng)了解,每臺甲型車每年節(jié)省費用萬元,每臺乙型車每年節(jié)省費用萬元,若要使購買的這批中巴車每年至少能節(jié)省萬,則購買甲型車至少多少臺?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,以BC為直徑的⊙O交AC于點D,過點D作⊙O的切線交AB于點M,交CB延長線于點N,連接OM,OC=1.
(1)求證:AM=MD;
(2)填空:
①若DN,則△ABC的面積為 ;
②當四邊形COMD為平行四邊形時,∠C的度數(shù)為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校為了加強和改進學校體育工作,切實提高學生體質健康水平,決定開展“陽光體育”活動,現(xiàn)對全校學生感興趣的球類項目(表示足球,表示籃球,表示排球,表示羽毛球,表示乒乓球)進行問卷調查,學生可根據(jù)自己的喜好選修一門,張老師對某班全班同學的選課情況進行統(tǒng)計后,制成了兩幅不完整的統(tǒng)計圖(部分信息未給出).
(1)求該班級學生的總人數(shù);
(2)將條形統(tǒng)計圖補充完整;
(3)若該校共有學生1500名,請估計有多少人選修足球?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知反比例函數(shù)y=(x>0)與正比例函數(shù)y=x(x≥0)的圖象,點A(1,4),點A'(4,b)與點B'均在反比例函數(shù)的圖象上,點B在直線y=x上,四邊形AA'B'B是平行四邊形,則B點的坐標為______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知四邊形ABCD是矩形,點E,G分別是AD,BC邊的中點,連接BE,CE,點F,H分別是BE,CE的中點連接FG,HG.
(1)求證:四邊形EFGH是菱形;
(2)當= 時,四邊形EFGH是正方形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知,在平面直角坐標系xOy中,點A的坐標為(0,2),點P(m,n)是拋物線上的一個動點.
(1)如圖1,過動點P作PB⊥x軸,垂足為B,連接PA,請通過測量或計算,比較PA與PB的大小關系:PA_____PB(直接填寫“>”“<”或“=”,不需解題過程);
(2)請利用(1)的結論解決下列問題:
①如圖2,設C的坐標為(2,5),連接PC,AP+PC是否存在最小值?如果存在,求點P的坐標;如果不存在,簡單說明理由;
②如圖3,過動點P和原點O作直線交拋物線于另一點D,若AP=2AD,求直線OP的解析式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,中,,,,點,分別在邊,上,將沿直線折疊,點恰好落在邊上的點處,且.
(1)求的長;
(2)點是射線上的一個動點,連接,,,的面積與的面積相等,
①當點在線段上時,求的長;
②當點在線段的延長線上時,________;
(3)將直線平移,平移后的直線與直線,直線分別交于點和點,以線段為一邊作正方形,點與點在直線兩側,連接當時,請直接寫出的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com