【題目】如圖,拋物線與x軸交于點A、B,與y軸交于點C,點O為坐標原點,點D為拋物線頂點,點E在拋物線上,點F在x軸上,四邊形OCEF為矩形,且OF=2,EF=3
(1)求拋物線所對應的函數解析式;
(2)求ΔABC的面積。
【答案】(1) ;(2)8.
【解析】試題分析:(1)在矩形OCEF中,已知OF、EF的長,即可得點C、E的坐標,然后利用待定系數法求函數的解析式即可;(2)根據(1)的函數解析式求出A、B、D三點的坐標,以AB為底、D點縱坐標的絕對值為高,可求出△ABD的面積.
試題解析:(1)∵四邊形OCEF為矩形,OF=2,EF=3,
∴點C的坐標為(0,3),點E的坐標為(2,3).
把x=0,y=3;x=2,y=3分別代入y=-x2+bx+c中,得
,
解得,
∴拋物線所對應的函數解析式為y=-x2+2x+3;
∵y=-x2+2x+3=-(x-1)2+4,
∴拋物線的頂點坐標為D(1,4),
∴△ABD中AB邊的高為4,
令y=0,得-x2+2x+3=0,
解得x1=-1,x2=3,
所以AB=3-(-1)=4,
∴△ABD的面積=×4×4=8.
科目:初中數學 來源: 題型:
【題目】進入六月以來,西瓜出現(xiàn)熱賣.佳佳水果超市用760元購進甲、乙兩個品種的西瓜,銷售完共獲利360元,其進價和售價如表:
甲品種 | 乙品種 | |
進價(元/千克) | 1.6 | 1.4 |
售價(元/千克) | 2.4 | 2 |
(1)求佳佳水果超市購進甲、乙兩個品種的西瓜各多少千克?
(2)由于銷售較好,該超市決定,按進價再購進甲,乙兩個品種西瓜,購進乙品種西瓜的重量不變,購進甲品種西瓜的重量是原來的2倍,甲品種西瓜按原價銷售,乙品種西瓜讓利銷售.若兩個品種的西瓜售完獲利不少于560元,問乙品種西瓜最低售價為多少元?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】“龜兔賽跑”的故事同學們都非常熟悉,圖中的線段和折線表示“龜兔賽跑”時路程與時間的關系.請你根據圖中給出的信息,解決下列問題.
(1)填空:折線表示賽跑過程中__________的路程與時間的關系,線段表示賽跑過程中__________的路程與時間的關系;
(2)兔子在起初每分鐘跑多少千米?烏龜每分鐘爬多少米?
(3)兔子醒來后,以48千米/時的速度跑向終點,結果還是比烏龜晚到了0.5分鐘,請你算算兔子在途中一共睡了多少分鐘?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△ABC 中,點 E,F,G 分別在 BC,AC,AB 上,AE 與 BF 交于點 O,且點 O 在 CG 上,根據尺規(guī)作圖的痕跡,判斷下列說法不正確的是( )
A.AE,BF 是△ABC 的角平分線B.點 O 到△ABC 三邊的距離相等
C.CG 也是△ABC 的一條角平分線D.AO=BO=CO
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在直角坐標系中,O 為坐標原點,已知點 A(1,2),點 P 是 y 軸正半軸上的一點,且△AOP 為等腰三角形,則點 P 的坐標為_____________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,拋物線與x軸交與A(1,0),B(- 3,0)兩點
(1)求該拋物線的解析式;
(2)設(1)中的拋物線交y軸與C點,在該拋物線的對稱軸上是否存在點Q,使得△QAC的周長最。咳舸嬖,求出Q點的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖:若∠AOD=∠BOC=60°,A、O、C三點在同一條線上,△AOB與△COD是能夠重合的圖形.求:
(1)旋轉中心;
(2)旋轉角度數;
(3)圖中經過旋轉后能重合的三角形共有幾對?若A、O、C三點不共線,結論還成立嗎?為什么?
(4)求當△BOC為等腰直角三角形時的旋轉角度;
(5)若∠A=15°,則求當A、C、B在同一條線上時的旋轉角度.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】“綠水青山,就是金山銀山”.某旅游景區(qū)為了保護環(huán)境,需購買兩種型號的垃圾處理設備共10臺,已知每臺型設備日處理能力為12噸;每臺型設備日處理能力為15噸,購回的設備日處理能力不低于140噸.
(1)請你為該景區(qū)設計購買兩種設備的方案;
(2)已知每臺型設備價格為3萬元,每臺型設備價格為4.4萬元.廠家為了促銷產品,規(guī)定貨款不低于40萬元時,則按9折優(yōu)惠;問:采用(1)設計的哪種方案,使購買費用最少,為什么?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在某市開展的環(huán)境創(chuàng)優(yōu)活動中,某居民小區(qū)要在一塊靠墻(墻長15米)的空地上修建一個矩形花園ABCD,花園的一邊靠墻,另三邊用總長為40m的柵欄圍成,若設花園平行于墻的一邊長為x(m),花園的面積為y(m2).
(1)求y與x之間的函數關系式,并寫出自變量x的取值范圍;
(2)滿足條件的花園面積能達到200m2嗎?若能,求出此時x的值,若不能,說明理由;
(3)根據(1)中求得的函數關系式,判斷當x取何值時,花園的面積最大,最大面積是多少?
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com