【題目】如圖,四邊形ABCD是正方形,BE⊥BF,BE=BF,EF與BC交于點G.
(1)求證:AE=CF;
(2)若∠ABE=55°,求∠EGC的大。
【答案】
(1)證明:∵四邊形ABCD是正方形,
∴∠ABC=90°,AB=BC,
∵BE⊥BF,
∴∠FBE=90°,
∵∠ABE+∠EBC=90°,∠CBF+∠EBC=90°,
∴∠ABE=∠CBF,
在△AEB和△CFB中,
∴△AEB≌△CFB(SAS),
∴AE=CF.
(2)解:∵BE⊥BF,
∴∠FBE=90°,
又∵BE=BF,
∴∠BEF=∠EFB=45°,
∵四邊形ABCD是正方形,
∴∠ABC=90°,
又∵∠ABE=55°,
∴∠EBG=90°﹣55°=35°,
∴∠EGC=∠EBG+∠BEF=45°+35°=80°.
【解析】(1)利用△AEB≌△CFB來求證AE=CF.(2)利用角的關(guān)系求出∠BEF和∠EBG,∠EGC=∠EBG+∠BEF求得結(jié)果.
【考點精析】本題主要考查了等腰直角三角形和正方形的性質(zhì)的相關(guān)知識點,需要掌握等腰直角三角形是兩條直角邊相等的直角三角形;等腰直角三角形的兩個底角相等且等于45°;正方形四個角都是直角,四條邊都相等;正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角;正方形的一條對角線把正方形分成兩個全等的等腰直角三角形;正方形的對角線與邊的夾角是45o;正方形的兩條對角線把這個正方形分成四個全等的等腰直角三角形才能正確解答此題.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一次函數(shù)y=﹣2x+4的圖象與x軸交點坐標(biāo)是 , 與y軸交點坐標(biāo)是 , 圖象與坐標(biāo)軸所圍成的三角形面積是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】先化簡,再求值:
(1)(x+y)(x-y)-x(x+y)+2xy,其中x=1,y=2.
(2)[(2x-y )2+(2x+y)(2x-y)-4xy]÷8x,其中x,y滿足|x-3|+(y+2 )2=0.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2006年德國世界杯足球賽中,32支足球隊將分為8個小組進(jìn)行單循環(huán)比賽,小組比賽規(guī)則如下:勝一場得3分,平一場得1分,負(fù)一場得0分.若小組賽中某隊的積分為5分,則該隊必是( )
A.兩勝一負(fù)
B.一勝兩平
C.一勝一平一負(fù)
D.一勝兩負(fù)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校學(xué)生會為了解環(huán)保知識的普及情況,從該校隨機(jī)抽取部分學(xué)生,對他們進(jìn)行了垃圾分類了解程度的調(diào)查,根調(diào)查收集的數(shù)據(jù)繪制了如下的扇形統(tǒng)計圖,其中對垃圾分類非常了解的學(xué)生有30人.
(1)本次抽取的學(xué)生有 人;
(2)請補全扇形統(tǒng)計圖;
(3)請估計該校1600名學(xué)生中對垃圾分類不了解的人數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com