【題目】如圖,拋物線y=ax2+bx﹣2經(jīng)過點A(4,0),B(1,0).
(1)求出拋物線的解析式;
(2)點D是直線AC上方的拋物線上的一點,求△DCA面積的最大值;
(3)P是拋物線上一動點,過P作PM⊥x軸,垂足為M,是否存在P點,使得以A,P,M為頂點的三角形與△OAC相似?若存在,請求出符合條件的點P的坐標;若不存在,請說明理.
【答案】(1)y=﹣x2+x﹣2;(2)當t=2時,△DAC面積最大為4;(3)符合條件的點P為(2,1)或(5,﹣2)或(﹣3,﹣14).
【解析】
(1)把A與B坐標代入解析式求出a與b的值,即可確定出解析式;(2)如圖所示,過D作DE與y軸平行,三角形ACD面積等于DE與OA乘積的一半,表示出S與t的二次函數(shù)解析式,利用二次函數(shù)性質(zhì)求出S的最大值即可;(3)存在P點,使得以A,P,M為頂點的三角形與△OAC相似,分當1<m<4時;當m<1時;當m>4時三種情況求出點P坐標即可.
(1)∵該拋物線過點A(4,0),B(1,0),
∴將A與B代入解析式得:,解得:,
則此拋物線的解析式為y=﹣x2+x﹣2;
(2)如圖,設D點的橫坐標為t(0<t<4),則D點的縱坐標為﹣t2+t﹣2,
過D作y軸的平行線交AC于E,
由題意可求得直線AC的解析式為y=x﹣2,
∴E點的坐標為(t,t﹣2),
∴DE=﹣t2+t﹣2﹣(t﹣2)=﹣t2+2t,
∴S△DAC=×(﹣t2+2t)×4=﹣t2+4t=﹣(t﹣2)2+4,
則當t=2時,△DAC面積最大為4;
(3)存在,如圖,
設P點的橫坐標為m,則P點的縱坐標為﹣m2+m﹣2,
當1<m<4時,AM=4﹣m,PM=﹣m2+m﹣2,
又∵∠COA=∠PMA=90°,
∴①當==2時,△APM∽△ACO,即4﹣m=2(﹣m2+m﹣2),
解得:m=2或m=4(舍去),
此時P(2,1);
②當==時,△APM∽△CAO,即2(4﹣m)=﹣m2+m﹣2,
解得:m=4或m=5(均不合題意,舍去)
∴當1<m<4時,P(2,1);
類似地可求出當m>4時,P(5,﹣2);
當m<1時,P(﹣3,﹣14),
綜上所述,符合條件的點P為(2,1)或(5,﹣2)或(﹣3,﹣14).
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形ABCD中,對角線AC的垂直平分線EF分別交BC,AD于點E,F,若BE=3,AF=5,則AC的長為( )
A. B. C. 10D. 8
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,在△ABC中,AB=AC=5,BC=8,D,E分別為BC,AB邊上一點,∠ADE=∠C.
(1)求證:△BDE∽△CAD;
(2)若CD=2,求BE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,下列說法:①2a+b=0,②當﹣1≤x≤3時,y<0;③3a+c=0;④若(x1,y1)(x2、y2)在函數(shù)圖象上,當0<x1<x2時,y1<y2,其中正確的是( 。
A. ①②④ B. ①③ C. ①②③ D. ①③④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△AOB是直角三角形,∠AOB=90°,OB=2OA,點A在反比例函數(shù)y=的圖象上.若點B在反比例函數(shù)y=的圖象上,則k的值為( )
A.-4 B.4 C.-2 D.2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙兩名同學參加少年科技創(chuàng)新選拔賽,六次比賽的成績?nèi)缦拢?/span>
甲:87 93 88 93 89 90
乙:85 90 90 96 89
(1)甲同學成績的中位數(shù)是__________;
(2)若甲、乙的平均成績相同,則__________;
(3)已知乙的方差是,如果要選派一名發(fā)揮穩(wěn)定的同學參加比賽,應該選誰?說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com