【題目】如圖,是邊延長線上一點,連接,,,交于點.添加以下條件,不能判定四邊形為平行四邊形的是( )
A. B.
C. D.
【答案】C
【解析】
根據(jù)平行四邊形的性質得到AD∥BC,AB∥CD,求得DE∥BC,∠ABD=∠CDB,推出BD∥CE,于是得到四邊形BCED為平行四邊形,故A正確;根據(jù)平行線的性質得到∠DEF=∠CBF,根據(jù)全等三角形的性質得到EF=BF,于是得到四邊形BCED為平行四邊形,故B正確;根據(jù)平行線的性質得到∠AEB=∠CBF,求得∠CBF=∠BCD,求得CF=BF,同理,EF=DF,不能判定四邊形BCED為平行四邊形;故C錯誤;根據(jù)平行線的性質得到∠DEC+∠BCE=∠EDB+∠DBC=180°,推出∠BDE=∠BCE,于是得到四邊形BCED為平行四邊形,故D正確.
∵四邊形是平行四邊形,
∴,,
∴,,
∵,
∴,
∴,
∴為平行四邊形,故A正確;
∵,
∴,
在與中,
,
∴,
∴,
∵,
∴四邊形為平行四邊形,故B正確;
∵,
∴,
∵,
∴,
∴,
同理,,
∴不能判定四邊形為平行四邊形;故C錯誤;
∵,
∴,
∵,
∴,
∴四邊形為平行四邊形,故D正確,
故選C.
科目:初中數(shù)學 來源: 題型:
【題目】如圖是拋物線y=ax2+bx+c(a≠0)的部分圖象,其頂點坐標為(1,n),拋物線與x軸的一個交點在點(3,0)和(4,0)之間.則下列結論
①a-b+c>0;②3a+b=0;
③b2=4a(c-n);
④一元二次方程ax2+bx+c=n-1有兩個不相等的實數(shù)根.
其中正確結論的個數(shù)是( )
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】探究與發(fā)現(xiàn):如圖1所示的圖形,像我們常見的學習用品--圓規(guī).我們不妨把這樣圖形叫做“規(guī)形圖”,
(1)觀察“規(guī)形圖”,試探究∠BDC與∠A、∠B、∠C之間的關系,并說明理由;
(2)請你直接利用以上結論,解決以下三個問題:
①如圖2,把一塊三角尺XYZ放置在△ABC上,使三角尺的兩條直角邊XY、XZ恰好經(jīng)過點B、C,∠A=40°,則∠ABX+∠ACX等于多少度;
②如圖3,DC平分∠ADB,EC平分∠AEB,若∠DAE=40°,∠DBE=130°,求∠DCE的度數(shù);
③如圖4,∠ABD,∠ACD的10等分線相交于點G1、G2…、G9,若∠BDC=133°,∠BG1C=70°,求∠A的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)探索:請你利用圖(1)驗證勾股定理.
(2)應用:如圖(2),已知在中,,,分別以AC,BC為直徑作半圓,半圓的面積分別記為,,則______.(請直接寫出結果).
(3)拓展:如圖(3),MN表示一條鐵路,A,B是兩個城市,它們到鐵路所在直線MN的垂直距離分別為千米,千米,且千米.現(xiàn)要在CD之間建一個中轉站O,求O應建在離C點多少千米處,才能使它到A,B兩個城市的距離相等.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形ABCD中,AD=5,AB=8,點E為射線DC上一個動點,把△ADE沿直線AE折疊,當點D的對應點F剛好落在線段AB的垂直平分線上時,則DE的長為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=ax2+bx﹣2經(jīng)過點A(4,0),B(1,0).
(1)求出拋物線的解析式;
(2)點D是直線AC上方的拋物線上的一點,求△DCA面積的最大值;
(3)P是拋物線上一動點,過P作PM⊥x軸,垂足為M,是否存在P點,使得以A,P,M為頂點的三角形與△OAC相似?若存在,請求出符合條件的點P的坐標;若不存在,請說明理.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】解決下列兩個問題:
(1)如圖(1),在中,,,垂直平分,點在直線上,直接寫出的最小值,并在圖中標出當取最小值時點的位置;
(2)如圖(2),點,在的內部,請在的內部求作一點,使得點到兩邊的距離相等,且使.(尺規(guī)作圖,保留作圖痕跡,無需證明).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下面各問題中給出的兩個變量x,y,其中y是x的函數(shù)的是
① x是正方形的邊長,y是這個正方形的面積;
② x是矩形的一邊長,y是這個矩形的周長;
③ x是一個正數(shù),y是這個正數(shù)的平方根;
④ x是一個正數(shù),y是這個正數(shù)的算術平方根.
A. ①②③B. ①②④C. ②④D. ①④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】有這樣一個問題:探究函數(shù)的圖象與性質.小華根據(jù)學習函數(shù)的經(jīng)驗,對函數(shù)的圖象與性質進行了探究.下面是小華的探究過程,請補充完整:
(1)在函數(shù)中,自變量x的取值范圍是________.
x | … | -4 | -3 | -2 | -1 | 0 | 1 | 2 | 3 | 4 | … |
y | … | 5 | 4 | 3 | 2 | 1 | 0 | 1 | 2 | m | … |
①求m的值;
②在平面直角坐標系xOy中,描出以上表中各組對應值為坐標的點,并根據(jù)描出的點,畫出該函數(shù)的圖象.
(2)結合函數(shù)圖象寫出該函數(shù)的一條性質:________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com