【題目】如圖①,在長方形ABCD中,AB=10cm,BC=8cm、點P從A出發(fā),沿A、B、C、D路線運動,到D停止;點P的速度為每秒1cm,a秒時點P的速度變?yōu)槊棵?/span>bcm,圖②是點P出發(fā)x秒后,△APD的面積S1(cm2)與x(秒)的函數(shù)關系圖象;
(1)根據(jù)圖②中提供的信息,求a、b及圖②中c的值;
(2)設點P離開點A的路程為y(cm),請寫出動點P改變速度后y與出發(fā)后的運動時間x(秒)的函數(shù)關系式;
(3)點P出發(fā)后幾秒,△APD的面積S1是長方形ABCD面積的?
【答案】(1)a=6,b=2,c=17;(2) y=2x﹣6;(3) 5秒或14.5秒.
【解析】
(1)根據(jù)三角形的面積公式可求a、b及圖②中c的值;
(2)確定y與x的等量關系后列出關系式即可;
(3)①P在AB上運動時,S△APD=,AP為運動時間t的一次函數(shù);
②P在BC上運動時S△APD=為定值.
③P在DC段上運動時,S△APD=.DP為P點運動時間的一次函數(shù).
先計算△APD的面積,然后將計算出來的數(shù)值代入所求函數(shù)的不同分段,解出對應的x的值,若解出的x值在對應的分段區(qū)間內,則x的值即為所求的解,反之則不是.
解:(1)根據(jù)圖象可知S△APD==×8×(1×a)=24
∴a=6
=2
=17
(2)∵a=6,b=2,
∴動點P改變速度后y與出發(fā)后的運動時間x(秒)的函數(shù)關系式為:y=6+2(x﹣6)=2x﹣6
(3)①當0≤x≤6時
AP=x(cm)
S△APD==4x
②當6<x≤8時
AP=6+(x﹣6)×2=2x﹣6
S△APD==8x﹣24
③當x運動到C點時
2x﹣6=18解得:x=12
即:8<x≤12時
S△APD==40
④當12<x≤17時
DP=2DC+BC﹣(2x﹣6)=﹣2x+34
S△APD==﹣8x+136
綜上:S△APD=;
S△APD==20
①4x=20時,x=5∈[0,6],符合
②2x﹣6=20時,x=13(6,8],舍去
③8<x≤12時,S△APD=40≠24,舍去
④﹣8x+136=20,x=14.5∈(8,12],符合
所以點P出發(fā)后5秒或14.5秒,△APD的面積S1是長方形ABCD面積的.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,過點B(6,0)的直線AB與直線OA相交于點A(4,2),動點M在y軸上運動.
(1)求直線AB的函數(shù)解析式;
(2)動點M在y軸上運動,使MA+MB的值最小,求點M的坐標;
(3)在y軸的負半軸上是否存在點M,使△ABM是以AB為直角邊的直角三角形?如果存在,求出點M的坐標;如果不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校組織同學到離校15千米的社會實踐基地開展活動.一部分同學騎自行車前往,另一部分同學在騎自行車的同學出發(fā) 小時后,乘汽車沿相同路線行進,結果騎自行車的與乘汽車的同學同時到達目的地.已知汽車速度是自行車速度的3倍,求自行車的速度.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將矩形紙片ABCD折疊,使點D與點B重合,點C落在處,折痕為EF,若,,則和的周長之和為
A. 3 B. 4 C. 6 D. 8
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某土產(chǎn)公司組織20輛汽車裝運甲、乙、丙三種土特產(chǎn)共120噸去外地銷售按計劃20輛車都要裝運,每輛汽車只能裝運同一種土特產(chǎn),且必須裝滿,根據(jù)下表提供的信息,解答以下問題
土特產(chǎn)種類 | 甲 | 乙 | 丙 |
每輛汽車運載量(噸) | 8 | 6 | 5 |
每噸土特產(chǎn)獲利(百元) | 12 | 16 | 10 |
(1)設裝運甲種土特產(chǎn)的車輛數(shù)為x,裝運乙種土特產(chǎn)的車輛數(shù)為y,求y與x之間的函數(shù)關系式;
(2)如果裝運每種土特產(chǎn)的車輛都不少于3輛,那么車輛的安排方案有幾種?并寫出每種安排方案;
(3)若要使此次銷售獲利最大,應采用(2)中哪種安排方案?并求出最大利潤的值
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠A=30°,BC=2 ,以直角邊AC為直徑作⊙O交AB于點D,則圖中陰影部分的面積是( )
A. ﹣
B. ﹣
C. ﹣
D. ﹣
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,對于點P(x,y),若點Q的坐標為(ax+y,x+ay),其中a為常數(shù),則稱點Q是點P的“a級關聯(lián)點”.例如,點P(1,4)的“3級關聯(lián)點”為Q(3×1+4,1+3×4),即Q(7,13).
(1)已知點A(﹣2,6)的“級關聯(lián)點”是點A1,點B的“2級關聯(lián)點”是B1(3,3),求點A1和點B的坐標;
(2)已知點M(m﹣1,2m)的“﹣3級關聯(lián)點”M′位于y軸上,求M′的坐標;
(3)已知點C(﹣1,3),D(4,3),點N(x,y)和它的“n級關聯(lián)點”N′都位于線段CD上,請直接寫出n的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)y=x2+bx+c的圖象與直線y=x+1相交于點A(﹣1,m)和點B(n,5).
(1)求該二次函數(shù)的關系式;
(2)在給定的平面直角坐標系中,畫出這兩個函數(shù)的大致圖象;
(3)結合圖象直接寫出x2+bx+c>x+1時x的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com