【題目】下列函數(shù)中,滿足y的值隨x的值增大而增大的是(
A.y=﹣2x
B.y=3x﹣1
C.y=
D.y=x2

【答案】B
【解析】解:A、在y=﹣2x中,k=﹣2<0, ∴y的值隨x的值增大而減;
B、在y=3x﹣1中,k=3>0,
∴y的值隨x的值增大而增大;
C、在y= 中,k=1>0,
∴y的值隨x的值增大而減;
D、二次函數(shù)y=x2
當x<0時,y的值隨x的值增大而減。
當x>0時,y的值隨x的值增大而增大.
故選B.
【考點精析】利用一次函數(shù)的性質和反比例函數(shù)的性質對題目進行判斷即可得到答案,需要熟知一般地,一次函數(shù)y=kx+b有下列性質:(1)當k>0時,y隨x的增大而增大(2)當k<0時,y隨x的增大而減;性質:當k>0時雙曲線的兩支分別位于第一、第三象限,在每個象限內(nèi)y值隨x值的增大而減。 當k<0時雙曲線的兩支分別位于第二、第四象限,在每個象限內(nèi)y值隨x值的增大而增大.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,RtABC中,∠C=90°,AC=3,BC=4,點PAB邊上任一點,過P分別作PEACE,PFBCF,則線段EF的最小值是__________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖①,在長方形ABCD中,AB=10cm,BC=8cm、點PA出發(fā),沿A、B、C、D路線運動,到D停止;點P的速度為每秒1cm,a秒時點P的速度變?yōu)槊棵?/span>bcm,圖②是點P出發(fā)x秒后,APD的面積S1(cm2)與x(秒)的函數(shù)關系圖象;

(1)根據(jù)圖②中提供的信息,求a、b及圖②中c的值;

(2)設點P離開點A的路程為y(cm),請寫出動點P改變速度后y與出發(fā)后的運動時間x(秒)的函數(shù)關系式;

(3)點P出發(fā)后幾秒,APD的面積S1是長方形ABCD面積的?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列各圖是在同一直角坐標系內(nèi),二次函數(shù)y=ax2+(a+c)x+c與一次函數(shù)y=ax+c的大致圖象,有且只有一個是正確的,正確的是(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列敘述中正確的是( )

A. 直角三角形中,兩條邊的平方和等于第三邊的平方

B. 若三角形三個內(nèi)角度數(shù)之比為3:4:5,則該三角形是直角三角形

C. ABC中,∠A、B、C的對邊分別為a、b、c,若,則∠B=90°

D. ABC的三邊為a、b、c,且滿足 ,則ABC是直角三角形

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某賓館有客房50間,當每間客房每天的定價為220元時,客房會全部住滿;當每間客房每天的定價增加10元時,就會有一間客房空閑,設每間客房每天的定價增加x元時,客房入住數(shù)為y間.
(1)求y與x的函數(shù)關系式(不要求寫出x的取值范圍);
(2)如果每間客房入住后每天的各種支出為40元,不考慮其他因素,則該賓館每間客房每天的定價為多少時利潤最大?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,O為坐標原點,四邊形OACB是菱形,OB在x軸的正半軸上,sin∠AOB= ,反比例函數(shù)y= 在第一象限內(nèi)的圖象經(jīng)過點A,與BC交于點F,則△AOF的面積等于

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,操場上有一根旗桿AH,為測量它的高度,在B和D處各立一根高1.5米的標桿BC、DE,兩桿相距30米,測得視線AC與地面的交點為F,視線AE與地面的交點為G,并且H、B、F、D、G都在同一直線上,測得BF為3米,DG為5米,求旗桿AH的高度?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在一個不透明的袋子中裝有僅顏色不同的10個小球,其中紅球4個,黑球6個.
(1)先從袋子中取出m(m>1)個紅球,再從袋子中隨機摸出1個球,若“摸出的球是黑球”為必然事件,求m的值;
(2)先從袋子中取出m個紅球,再放入m個一樣的黑球并搖勻,隨機摸出1個黑球的概率等于 ,求m的值.

查看答案和解析>>

同步練習冊答案